## Section 5.7: Antiderivatives

DEFINITION 1. A function $F$ is called an antiderivative of $f$ on an interval $I$ if $F^{\prime}(x)=f(x)$ for all $x$ in $I$.

EXAMPLE 2. (a) Is the function $F(x)=x \ln (x)-x+\sin x$ is an antiderivative of $f(x)=\ln (x)+\cos x ?$
(b) Is the function $F(x)=x \ln (x)-x+\sin x+10$ is an antiderivative of $f(x)=\ln (x)+\cos x$ ?
(c) What is the most general antiderivative of $f(x)=\ln (x)+\cos x$ ?

THEOREM 3. If $F$ is an antiderivative of $f$ on an interval $I$, then the most general antiderivative of $f$ on $I$ is $F(x)+C$, where $C$ is an arbitrary constant.

EXAMPLE 4. Find the most general antiderivative of $f=2 x$.

## Table of Antidifferentiation Formulas

| Function | Particular antiderivative | Most general antiderivative |
| :--- | :---: | :---: |
| $k \quad(k \in \mathbb{R})$ | $k x$ | $k x+C$ |
| $x^{n} \quad(n \neq-1)$ | $\frac{x^{n+1}}{n+1}$ | $\frac{x^{n+1}}{n+1}+C$ |
| $\frac{1}{x}$ | $\ln \|x\|$ |  |
| $e^{x}$ | $e^{x}$ |  |
| $\cos x$ | $\sin x$ |  |
| $\sin x$ | $-\cos x$ |  |
| $\sec ^{2} x$ | $\tan x$ |  |
| $\csc ^{2} x$ | $-\cot x$ |  |
| $\sec ^{2} \tan x$ | $\sec x$ |  |
| $\csc x \cot x$ | $\csc x$ |  |
| $\frac{1}{\sqrt{1-x^{2}}}$ | $\arcsin x$ |  |
| $\frac{1}{1+x^{2}}$ | $\arctan x$ |  |

EXAMPLE 5. Find the most general antiderivative of $f$ where
(a) $f(x)=5 \sin x+7 x^{6}-\sqrt[8]{x^{7}}+15$
(b) $f(x)=\frac{3 x+8-x^{2}}{x^{3}}$
(c) $f(x)=e^{x}+\left(1-x^{2}\right)^{-1 / 2}$

EXAMPLE 6. Find $f(x)$ given that $f^{\prime}(x)=4-3\left(1+x^{2}\right)^{-1}, \quad f(1)=0$.

EXAMPLE 7. Find $f(x)$ given that $f^{\prime \prime}(x)=3 e^{x}+5 \sin x, \quad f(0)=1, \quad f^{\prime}(0)=2$.

