\qquad

Due Tuesday 02/14/17 at the beginning of class.

Directions:

- Print out this file and write your solutions in the space provided.YOUR WORK MUST BE NEAT, EASY TO FOLLOW. Show all you work and box your final answer.
- You may use notes and textbook, but not the help of anything else.
- Each problem worth 10 points.

On my honor, as an Aggie, I certify that the solution submitted by me is my own work. I had neither given nor received unauthorized aid on this work.

Signature:

\qquad

1. Find two unit vectors parallel to $\mathbf{a}=\langle 6,-8\rangle$.
2. Find x if $\mathbf{u}=\frac{1}{3} \mathbf{i}+x \mathbf{j}$ is a unit vector.
3. Find all values of z such that $\mathbf{w}=\left\langle z,-\frac{z}{3}\right\rangle$ is a unit vector.
4. For the points $A(3,4), B(6,10), C(a+2, b+5)$, and $D(b+4, a-2)$, find the values of a and b such that $\overrightarrow{A B}=\overrightarrow{C D}$.
5. Let $\mathbf{u}=\langle 2,-3\rangle$ and $\mathbf{v}=\langle-4,1\rangle$. Find vector $\mathbf{x}=\langle a, b\rangle$ such that $2 \mathbf{x}+\mathbf{u}=\mathbf{v}$.
6. Find position vector of your final location if you start at the origin and walk along $\langle 4,-6\rangle$ followed by $\langle 5,9\rangle$.
7. Let $\mathbf{a}=\langle x, 5\rangle$ and $\mathbf{b}=\langle 2,6\rangle$.
(a) Find the values of x such that \mathbf{a} and \mathbf{b} are parallel.
(b) Find the values of x such that \mathbf{a} and \mathbf{b} are orthogonal.
8. Find the parametric equations for the line through the point $(5,1)$ and parallel to $\mathbf{r}(t)=\langle-3+t, 4-t\rangle$.
9. Find the parametric equations for the line through the point $(5,1)$ and perpendicular to $\mathbf{r}(t)=\langle-3,4-t\rangle$.
10. Eliminate the parameter to find the Cartesian equation of the curve $\mathbf{r}(t)=\langle 1+\cos t, 2+\sin t\rangle$, $\pi \leq t \leq 2 \pi$. Then sketch the curve indicating the direction of motion.
