Math 172 Exam 1 Review

Do the following problems the textbook: Section 8.3 # 1,5,7,13,17

- 1. If $F(x) = \int_0^{e^x} \cos(t^2) dt$ what is F'(x)?
- 2. Find the area between the curves $y = 3x^2$ and y = 6x from x = 0 to x = 4.
- 3. Compute $\int_0^1 \frac{2x}{\sqrt[4]{x^2+1}} \, dx.$
- 4. After an appropriate substitution, the integral $\int_{-1}^{2} 3x^5 \sqrt{x^3 + 1} \, dx$ is equivalent to which of the following?

(a)
$$\int_0^3 \left(u^{3/2} - u^{1/2} \right) du$$
 (b) $\int_{-1}^2 \left(u^{1/2} - u^{3/2} \right) du$ (c) $\int_0^3 \left(u^{1/2} + u^{3/2} \right) du$
(d) $\int_0^9 \left(u^{3/2} - u^{1/2} \right) du$ (e) $\int_{-1}^2 x^3 u^{1/2} du$

- 5. Determine the area of the region bounded by the x-axis, the curve $y = x^4$ and tangent line to this curve at the point (-1, 1).
- 6. The height of a monument is 20 m. A horizontal cross-section at a distance x meters from the top is an isosceles triangle with base x/4 meters and height x/3 meters. Set up, but do not evaluate, an integral for the volume of the monument.
- 7. Find the volume of the solid whose base is the area enclosed by $y = e^x$ and $y = e^{-x}$ from [0, 1] with cross-sections perpendicular to the x-axis that are equilateral triangles.
- 8. Find the volume of the solid formed by rotating the region bounded by x = 0, $y = \ln(x)$, y = 0, and y = 3 about the y-axis.
- 9. Using **cylindrical shells** which of the following integrals gives the volume of the solid formed by rotating the region bounded by $y = \sqrt{x}$ and $y = x^2$ about the line x = -2?

(a)
$$2\pi \int_0^1 (x-2)(\sqrt{x}-x^2) dx$$
 (b) $2\pi \int_0^1 (x+2)(\sqrt{x}-x^2) dx$ (c) $\pi \int_0^1 (x^2-\sqrt{x})^2 dx$
(d) $\pi \int_0^1 \left[(y^2-2)^2 - (\sqrt{y}-2)^2 \right] dy$ (e) $\pi \int_0^1 \left(y^2 - \sqrt{y} \right) (y+2) dy$

- 10. A 15-Newton weight is suspended vertically at the end of a 30 m long rope. The rope weighs 6 Newtons. How much work (in Newton-m) is required to pull the weight to the top?
- 11. If a 25J work is required to keep a spring 1m beyond its natural length, how much work is done in stretching the spring from 2m to 4m beyond its natural length?
- 12. A rectangular swimming pool 20 m long, 10 m wide and 3 m deep is full of water (density = $\rho \text{ kg/m^3}$). What is the work required to pump all the water out of the top of the pool? (Leave your answer in terms of density ρ and the gravitational constant g.)

- 13. A tank of water is a trough 10 feet long and has a vertical cross section in the shape of a semi circle with radius 4 feet, diameter at the top. The tank is filled with water. The water is pumped from a spout at the top of the tank that is 0.5ft high. Find the work needed to pump out the water until the water level is 1 ft from the bottom. Just set up the integral (assume that the density of water is 62.5lb/ft^3 .)
- 14. A tank has the shape of an upright circular cone with height 15m and radius 3m. In addition, there is a 1 meter high spout at the top of the cone from which the water exits the tank. If the tank is initially full to a water depth of 9m, find the work required to pump all of the water out of the spout. Just set up the integral. (Leave your answer in terms of density ρ and the gravitational constant g.)
- 15. Find the average value of $f(x) = \sin^2 x$ over the interval $\left[0, \frac{\pi}{4}\right]$.
- 16. Compute the following integrals:

(a)
$$I = \int_{0}^{1} (x^{2} + 4x - 1)e^{x} dx.$$

(b)
$$\int \sqrt{x} \ln(x) dx$$

(c)
$$I = \int \frac{x}{3} \sin \frac{x - 1}{3} dx$$

(d)
$$I = \int_{0}^{1} \frac{x^{2}}{e^{10x}} dx.$$

(e)
$$I = \int \arctan \frac{1}{x} dx$$

(f)
$$I = \int \sin^{5} x \sqrt{\cos x} dx$$

(g)
$$I = \int \frac{\cos^{5}(\ln x)}{x} dx$$

(h)
$$\int \cos^{2}(3x) \sin^{2}(3x) dx$$