Math 172 Exam 2 Review

Do the following problems the textbook: Section 9.1 \# 2,5,7,8,10,12,18 (cf. Hmwk 7)

1. Determine whether the given integral is convergent or divergent.
(a) $\int_{1}^{\infty} \frac{4+\cos ^{4} x}{x} \mathrm{~d} x$
(b) $\int_{0}^{\infty} \frac{1}{\sqrt{x}+e^{4 x}} \mathrm{~d} x$
2. Evaluate $I=\int_{0}^{2012} \frac{1}{\sqrt{2012-x}} \mathrm{~d} x$.
3. Set up, but don't evaluate the integral for the length of the curve $x=2 t^{2}, \quad y=t^{3}, \quad 0 \leq t \leq 1$.
4. Find length of the curve $y=\frac{1}{\pi} \ln (\sec (\pi x))$ from the point $(0,0)$ to the point $\left(\frac{1}{6}, \ln \frac{2}{\sqrt{3}}\right)$.
5. Write out the form of the partial fraction decomposition (do not try to solve)

$$
\frac{20 x^{3}+12 x^{2}+x}{\left(x^{3}-x\right)\left(x^{3}+2 x^{2}-3 x\right)\left(x^{2}+x+1\right)\left(x^{2}+9\right)^{2}}
$$

6. Evaluate the integral $\int \frac{5 x^{2}+x+12}{x^{3}+4 x} \mathrm{~d} x$
7. A tank contains 250 liters of pure water. Brine that contains 0.01 kg of salt per liter enters the tank at a rate of 20 liters per minute. The solution is kept mixed and drains from the tank at a rate of 20 liters per minute. How much salt is in the tank after t minutes?
8. What is the smallest value of n so that the approximation T_{n} (the trapezoidal rule with n subintervals) to the integral $\int_{1}^{3} \ln x \mathrm{~d} x$ is accurate to within $\frac{1}{2400}$?
