Math 172 Exam 3 Review

Do the following problems the textbook: Section 10.6 # 3, 5, 6, 7, 11, 19

- 1. Find the general solution of the differential equation $ty' + 3y = \cos t$, t > 0, and determine how the solutions behave as $t \to +\infty$.
- 2. Solve the initial value problem $y' 5y = te^{4t}$, y(0) = a, where a is an arbitrary real constant.
- 3. Given a series whose partial sums are given by $s_n = (7n+3)/(n+7)$, find the general term a_n of the series and determine if the series converges or diverges. If it converges, find the sum.
- 4. Find the sum of the following series or show they are divergent:

(a)
$$\sum_{n=1}^{\infty} \frac{7+5^n}{10^n}$$

(b) $\sum_{n=1}^{\infty} \frac{8}{(n+1)(n+3)}$

- 5. Write the repeating decimal $0.\overline{27}$ as a fraction.
- 6. Use the test for Divergence to determine whether the series diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{n^5}{3(n^4+3)(n+1)}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sqrt{n}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{6-e^{-n}}$

7. Determine if the sequence $\{a_n\}_{n=2}^{\infty}$ is decreasing and bounded:

(a)
$$a_n = \ln n$$

(b)
$$a_n = \cos n^2$$

(c)
$$a_n = e^{-n}$$

(d)
$$a_n = e^n + 11$$

- (e) $a_n = 1 \frac{1}{n^2}$
- 8. Determine if the sequence converges or diverges. If converges, find its limit.

(a)
$$\left\{\frac{2012 + (-1)^n}{n^{2012}}\right\}_{n=1}^{\infty}$$

(b) $\left\{\sqrt{\frac{7n + 6n^3 + n^2}{(n+3)(n^2+8)}}\right\}_{n=4}^{\infty}$.

9. Assuming that the sequence defined recursively by $a_1 = 1$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{16}{a_n} \right)$ is convergent, find its limit.

- 10. For what values of x the series $\sum_{n=0}^{\infty} (4x-3)^{n+3}$ converges? What is the sum of the series?
- 11. Compute $S = \sum_{n=1}^{\infty} (e^{1/n} e^{1/(n+1)}).$
- 12. Which of the following series converges absolutely?

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+5}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sin(\pi^3 n^2)}{n^2 \sqrt{n}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[4]{n}}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^n}{(n!)^2}$$

(f)
$$\sum_{n=1}^{\infty} \frac{5^n}{\ln(n+1)}$$

13. Suppose that the power series $\sum_{n=1}^{\infty} c_n (x-4)^n$ has the radius of convergence 4. Consider the following pair of series:

(I)
$$\sum_{n=1}^{\infty} c_n 5^n$$
 (II) $\sum_{n=1}^{\infty} c_n 3^n$

Which of the following statements is true?

- (a) (I) is convergent, (II) is divergent
- (b) Neither series is convergent
- (c) Both series are convergent
- (d) (I) is divergent, (II) is convergent
- (e) no conclusion can be drawn about either series.
- 14. Show that the series $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$ converges. Then find un upper bound on the error in using s_{10} to approximate the series. (Note that $\ln 2 > 1/2$.)
- 15. If we represent $\frac{x^2}{4+9x^2}$ as a power series centered at a = 0, what is the associated radius of convergence?
- 16. Find the radius and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-2)^n (3x-1)^n}{n}.$
- 17. Which of the following statements is TRUE?

(a) If
$$a_n > 0$$
 for $n \ge 1$ and $\sum_{n=1}^{\infty} (-1)^n a_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges.
(b) If $a_n > 0$ for $n \ge 1$ and $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.
 ∞

- (c) If $\lim_{n \to \infty} a_n = 0$ then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.
- (d) If $a_n > 0$ for $n \ge 1$ and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{e}{2}$ then $\sum_{n=1}^{\infty} a_n$ converges.

18. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2 3^n}$ converges to s. Use the Alternating Series Theorem to estimate $|s-s_6|$.