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Math 172 Exam 3
KEY POINTS (sections 9.2, 10.1-10.6)

9.2: First-Order Linear Differential Equations

• A first order ODE is called linear if it is expressible in the form

y′ + p(t)y = g(t) (1)

where p(t) and g(t) are given functions.

• The Method of Integrating Factors

Step 1 Put ODE in the form (1).

Step 2 Find the integrating factor
µ(t) = e

∫
p(t)dt

Note: Any µ will suffice here, thus take the constant of integration C = 0.

Step 3 Multiply both sides of (1) by µ and use the Product Rule for the left side to express
the result as

(µ(t)y(t))′ = µg(x) (2)

Step 4 Integrate both sides of (2). Note: Be sure to include the constant of integration in
this step!

Step 5 Solve for the solution y(t).

10.1: Sequences

• If lim
n→∞

an exists and finite then we say that the sequence {an} converges. Otherwise, we

say the sequence diverges. (Recall all techniques for finding limits at infinity.)

• The Squeeze Theorem for Sequences: If an ≤ bn ≤ cn for all n and the sequences {an} and
{cn} have a common limit L as n→∞, then lim

n→∞
bn = L.

• If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

• {an} increasing: show that an+1 − an > 0, or f ′(x) > 0 (where f(n) = an); or
an + 1

an
> 1

(provided an > 0 for all n.) Note: reverse signs for {an} decreasing.

10.2: Series

• Infinite series
∞∑
n=1

an (n = 1 for convenience, it can be anything).

• Partial sums: sN =
N∑

n=1

an. Note sN = sN−1 + aN .
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• If {sN}∞N=1 is convergent and lim
N→∞

sN = s exists as a real number, then the series
n∑

n=1

an is

convergent. The number s is called the sum of the series.

• Series we can sum:

– Geometric Series
∞∑
n=1

arn−1 =
∞∑
n=0

arn =
a

1− r
, −1 < r < 1

– Telescoping Series

• THE TEST FOR DIVERGENCE: If lim
n→∞

an does not exist or if lim
n→∞

an 6= 0, then the series
∞∑
n=1

an is divergent.

• The Test for Divergence cannot be used to prove that a series converges. It can
only show a series is divergent.

10.3 : The Integral and Comparison Tests; Estimating Sums

THE TEST FOR DIVERGENCE:
If lim

n→∞
an does not exist or if lim

n→∞
an 6= 0, then the series∑

an is divergent.

If lim
n→∞

an = 0 then the series may or

may not converge.

THE INTEGRAL TEST
Let

∑
an be a positive series. If f is a continuous and

decreasing function on [a,∞) such that an = f(n) for all n ≥

a then
∑

an and

∫ ∞
a

f(x) dx both converge or both diverge.

Apply to positive series only when
f(x) is easy to integrate.

THE COMPARISON TEST
Suppose that

∑
an and

∑
bn are series with nonnegative

terms and an ≤ bn for all n.

• If
∑
bn is convergent then

∑
an is also convergent.

• If
∑
an is divergent then

∑
bn is also divergent.

• It applies to series with non-
negative terms only.

• Try it as a last resort (other
tests are often easier to apply).

• It requires some skills in chos-
ing a series for comparison.

LIMIT COMPARISON TEST
Suppose that

∑
an and

∑
bn are series with positive terms

. If

lim
n→∞

an
bn

= c

where c is a finite number and c > 0, then either both series
converge or both diverge.

• It applies to positive series
only.

• It requires less skills to choose
series for comparison than in
Comparison test.
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• FACT: The p-series,
∞∑
n=1

1

np
, converges if p > 1 and diverges if p ≤ 1.(by Integral

Tests)

• REMAINDER ESTIMATE FOR THE INTEGRAL TEST

If
∑
an converges by the Integral Test and Rn = s− sn, then∫ ∞

n+1

f(x) dx ≤ Rn ≤
∫ ∞
n

f(x) dx

10.4 : Other Convergence Tests

ALTERNATING SERIES TEST:
If bn > 0, lim

n→∞
bn = 0 and the sequence {bn} is decreasing then

the series
∑

(−1)nbn is convergent.

It applies only to alternating series.

RATIO TEST

For a series
∑
an with nonzero terms define L = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
• If L < 1 then the series is absolutely convergent (which

implies the series is convergent.)

• If L > 1 then the series is divergent.

• If L = 1 then the series may be divergent, conditionally
convergent or absolutely convergent (test fails).

• Try it when an involves facto-
rials or n-th powers.

• The series need not have posi-
tive terms and need not be al-
ternating to use it.

• Absolute convergence implies
convergence.

The Alternating Series Theorem. If
∞∑
n=1

(−1)nbn is a convergent alternating series and

you used a partial sum sn to approximate the sum s (i.e. s ≈ sn) then |Rn| ≤ bn+1.

10.5: Power Series

• For a given power series
∞∑
n=0

cn(x− a)n there are only 3 possibilities:

1. There is R > 0 such that the series converges if |x− a| < R and diverges if |x− a| > R.
We call such R the radius of convergence.

2. The series converges only for x = a (then R = 0).

3. The series converges for all x (then R =∞).

• We find the radius of convergence using the Ratio Test.

• An interval of convergence is the interval of all x’s for which the power series converges.

• You must check the endpoints x = a±R individually to determine whether or not they are
in the interval of convergence.
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10.6: Representation of Functions as Power Series

Key Points

• Geometric Series Formula:

1

1− x
=
∞∑
n=1

xn−1 =
∞∑
n=0

xn, −1 < x < 1.

• Term-by-term Differentiation and Integration of power series:

If
∞∑
n=0

cn(x− a)n has radius of convergence R > 0, then f(x) =
∞∑
n=0

cn(x− a)n is differentiable

(and therefore continuous) on the interval (a−R, a+R) and

– f ′(x) =
∞∑
n=1

ncn(x− a)n−1

–

∫
f(x) dx = C +

∞∑
n=0

cn
n+ 1

(x− a)n+1

The radii of convergence of the power series for f ′(x) and

∫
f(x) dx are both R.


