Math 172 Exam 3 KEY POINTS (sections 9.2, 10.1-10.6)

9.2: First-Order Linear Differential Equations

• A first order ODE is called **linear** if it is expressible in the form

$$y' + p(t)y = g(t) \tag{1}$$

where p(t) and g(t) are given functions.

• The Method of Integrating Factors

- **Step 1** Put ODE in the form (1).
- Step 2 Find the integrating factor

$$\mu(t) = e^{\int p(t) \mathrm{d}t}$$

Note: Any μ will suffice here, thus take the constant of integration C = 0.

Step 3 Multiply both sides of (1) by μ and use the Product Rule for the left side to express the result as

$$(\mu(t)y(t))' = \mu g(x) \tag{2}$$

Step 4 Integrate both sides of (2). Note: Be sure to include the constant of integration in this step!

Step 5 Solve for the solution y(t).

10.1: Sequences

- If $\lim_{n \to \infty} a_n$ exists and finite then we say that the sequence $\{a_n\}$ converges. Otherwise, we say the sequence diverges. (Recall all techniques for finding limits at infinity.)
- The Squeeze Theorem for Sequences: If $a_n \leq b_n \leq c_n$ for all n and the sequences $\{a_n\}$ and $\{c_n\}$ have a common limit L as $n \to \infty$, then $\lim_{n \to \infty} b_n = L$.
- If $\lim_{n \to \infty} |a_n| = 0$, then $\lim_{n \to \infty} a_n = 0$.
- $\{a_n\}$ increasing: show that $a_{n+1} a_n > 0$, or f'(x) > 0 (where $f(n) = a_n$); or $\frac{a_n + 1}{a_n} > 1$ (provided $a_n > 0$ for all n.) Note: reverse signs for $\{a_n\}$ decreasing.

10.2: Series

• Infinite series $\sum_{n=1}^{\infty} a_n$ (*n* = 1 for convenience, it can be anything).

• Partial sums:
$$s_N = \sum_{n=1}^N a_n$$
. Note $s_N = s_{N-1} + a_N$.

- If $\{s_N\}_{N=1}^{\infty}$ is convergent and $\lim_{N \to \infty} s_N = s$ exists as a real number, then the series $\sum_{n=1}^{n} a_n$ is *convergent*. The number *s* is called the **sum** of the series.
- Series we can sum:

- Geometric Series
$$\sum_{n=1}^{\infty} ar^{n-1} = \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}, \quad -1 < r < 1$$

- Telescoping Series
- THE TEST FOR DIVERGENCE: If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- The Test for Divergence cannot be used to prove that a series converges. It can only show a series is divergent.

10.3 : The Integral and Comparison Tests; Estimating Sums

THE TEST FOR DIVERGENCE:If $\lim_{n \to \infty} a_n$ does not exist or if $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum a_n$ is divergent.THE INTEGRAL TESTLet $\sum a_n$ be a positive series. If f is a continuous and decreasing function on $[a, \infty)$ such that $a_n = f(n)$ for all $n \geq$	If $\lim_{n \to \infty} a_n = 0$ then the series may or may not converge. Apply to positive series only when f(x) is easy to integrate.
 a then ∑ a_n and ∫_a[∞] f(x) dx both converge or both diverge. THE COMPARISON TEST Suppose that ∑ a_n and ∑ b_n are series with nonnegative terms and a_n ≤ b_n for all n. If ∑ b_n is convergent then ∑ a_n is also convergent. If ∑ a_n is divergent then ∑ b_n is also divergent. 	 It applies to series with non-negative terms only. Try it as a last resort (other tests are often easier to apply). It requires some skills in chosing a series for comparison.
LIMIT COMPARISON TEST Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms . If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ where c is a finite number and $c > 0$, then either both series converge or both diverge.	 It applies to positive series only. It requires less skills to choose series for comparison than in Comparison test.

• FACT: The *p*-series, $\sum_{n=1}^{\infty} \frac{1}{n^p}$, converges if p > 1 and diverges if $p \le 1$.(by Integral Tests)

• REMAINDER ESTIMATE FOR THE INTEGRAL TEST

If $\sum a_n$ converges by the Integral Test and $R_n = s - s_n$, then

$$\int_{n+1}^{\infty} f(x) \, \mathrm{d}x \le R_n \le \int_n^{\infty} f(x) \, \mathrm{d}x$$

10.4 : Other Convergence Tests

ALTERNATING SERIES TEST:	It applies only to alternating series.
If $b_n > 0$, $\lim_{n \to \infty} b_n = 0$ and the sequence $\{b_n\}$ is decreasing then	
the series $\sum_{n=0}^{n\to\infty} (-1)^n b_n$ is convergent.	
RATIO TEST	
For a series $\sum a_n$ with nonzero terms define $L = \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right $.	• Try it when a_n involves factorials or <i>n</i> -th powers.
• If $L < 1$ then the series is absolutely convergent (which implies the series is convergent.)	• The series need not have posi- tive terms and need not be al-
• If $L > 1$ then the series is divergent.	ternating to use it.
• If $L = 1$ then the series may be divergent, conditionally convergent or absolutely convergent (test fails).	• Absolute convergence implies convergence.

The Alternating Series Theorem. If $\sum_{n=1}^{\infty} (-1)^n b_n$ is a convergent alternating series and you used a partial sum s_n to approximate the sum s (i.e. $s \approx s_n$) then $|R_n| \leq b_{n+1}$.

10.5: Power Series

- For a given power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ there are only 3 possibilities:
 - 1. There is R > 0 such that the series converges if |x a| < R and diverges if |x a| > R. We call such R the **radius of convergence**.
 - 2. The series converges only for x = a (then R = 0).
 - 3. The series converges for all x (then $R = \infty$).
- We find the radius of convergence using the **Ratio Test.**
- An interval of convergence is the interval of all x's for which the power series converges.
- You must check the endpoints $x = a \pm R$ individually to determine whether or not they are in the interval of convergence.

10.6: Representation of Functions as Power Series

Key Points

• Geometric Series Formula:

$$\frac{1}{1-x} = \sum_{n=1}^{\infty} x^{n-1} = \sum_{n=0}^{\infty} x^n, \quad -1 < x < 1.$$

• Term-by-term Differentiation and Integration of power series:

If $\sum_{n=0}^{\infty} c_n (x-a)^n$ has radius of convergence R > 0, then $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ is differentiable (and therefore continuous) on the interval (a-R, a+R) and

$$- f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$$
$$- \int f(x) \, \mathrm{d}x = C + \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x-a)^{n+1}$$

The radii of convergence of the power series for f'(x) and $\int f(x) dx$ are both R.