Math 172 Exam 3
 KEY POINTS (sections 9.2, 10.1-10.6)

9.2: First-Order Linear Differential Equations

- A first order ODE is called linear if it is expressible in the form

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{1}
\end{equation*}
$$

where $p(t)$ and $g(t)$ are given functions.

- The Method of Integrating Factors

Step 1 Put ODE in the form (1).
Step 2 Find the integrating factor

$$
\mu(t)=e^{\int p(t) \mathrm{d} t}
$$

Note: Any μ will suffice here, thus take the constant of integration $C=0$.
Step 3 Multiply both sides of (1) by μ and use the Product Rule for the left side to express the result as

$$
\begin{equation*}
(\mu(t) y(t))^{\prime}=\mu g(x) \tag{2}
\end{equation*}
$$

Step 4 Integrate both sides of (2). Note: Be sure to include the constant of integration in this step!
Step 5 Solve for the solution $y(t)$.

10.1: Sequences

- If $\lim _{n \rightarrow \infty} a_{n}$ exists and finite then we say that the sequence $\left\{a_{n}\right\}$ converges. Otherwise, we say the sequence diverges. (Recall all techniques for finding limits at infinity.)
- The Squeeze Theorem for Sequences: If $a_{n} \leq b_{n} \leq c_{n}$ for all n and the sequences $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ have a common limit L as $n \rightarrow \infty$, then $\lim _{n \rightarrow \infty} b_{n}=L$.
- If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
- $\left\{a_{n}\right\}$ increasing: show that $a_{n+1}-a_{n}>0$, or $f^{\prime}(x)>0$ (where $f(n)=a_{n}$); or $\frac{a_{n}+1}{a_{n}}>1$ (provided $a_{n}>0$ for all n.) Note: reverse signs for $\left\{a_{n}\right\}$ decreasing.

10.2: Series

- Infinite series $\sum_{n=1}^{\infty} a_{n} \quad(n=1$ for convenience, it can be anything).
- Partial sums: $s_{N}=\sum_{n=1}^{N} a_{n}$. Note $s_{N}=s_{N-1}+a_{N}$.
- If $\left\{s_{N}\right\}_{N=1}^{\infty}$ is convergent and $\lim _{N \rightarrow \infty} s_{N}=s$ exists as a real number, then the series $\sum_{n=1}^{n} a_{n}$ is convergent. The number s is called the sum of the series.
- Series we can sum:
- Geometric Series $\sum_{n=1}^{\infty} a r^{n-1}=\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}, \quad-1<r<1$
- Telescoping Series
- THE TEST FOR DIVERGENCE: If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
- The Test for Divergence cannot be used to prove that a series converges. It can only show a series is divergent.

10.3 : The Integral and Comparison Tests; Estimating Sums

THE TEST FOR DIVERGENCE: If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum a_{n}$ is divergent.	If $\lim _{n \rightarrow \infty} a_{n}=0$ then the series may or may not converge.
THE INTEGRAL TEST Let $\sum a_{n}$ be a positive series. If f is a continuous and decreasing function on $[a, \infty)$ such that $a_{n}=f(n)$ for all $n \geq$ a then $\sum a_{n}$ and $\int_{a}^{\infty} f(x) \mathrm{d} x$ both converge or both diverge.	Apply to positive series only when $f(x)$ is easy to integrate.
THE COMPARISON TEST Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with nonnegative terms and $a_{n} \leq b_{n}$ for all n. - If $\sum b_{n}$ is convergent then $\sum a_{n}$ is also convergent. - If $\sum a_{n}$ is divergent then $\sum b_{n}$ is also divergent.	- It applies to series with nonnegative terms only. - Try it as a last resort (other tests are often easier to apply). - It requires some skills in chosing a series for comparison.
LIMIT COMPARISON TEST Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms . If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ where c is a finite number and $c>0$, then either both series converge or both diverge.	- It applies to positive series only. - It requires less skills to choose series for comparison than in Comparison test.

- FACT: The p-series, $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$, converges if $p>1$ and diverges if $p \leq 1$.(by Integral Tests)
- REMAINDER ESTIMATE FOR THE INTEGRAL TEST

If $\sum a_{n}$ converges by the Integral Test and $R_{n}=s-s_{n}$, then

$$
\int_{n+1}^{\infty} f(x) \mathrm{d} x \leq R_{n} \leq \int_{n}^{\infty} f(x) \mathrm{d} x
$$

10.4 : Other Convergence Tests

ALTERNATING SERIES TEST: \quad It applies only to alternating series.
If $b_{n}>0, \lim _{n \rightarrow \infty} b_{n}=0$ and the sequence $\left\{b_{n}\right\}$ is decreasing then the series $\sum^{n \rightarrow \infty}(-1)^{n} b_{n}$ is convergent.
RATIO TEST
For a series $\sum a_{n}$ with nonzero terms define $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.

- Try it when a_{n} involves factorials or n-th powers.
- If $L<1$ then the series is absolutely convergent (which implies the series is convergent.)
- The series need not have positive terms and need not be al-
- If $L>1$ then the series is divergent.
- If $L=1$ then the series may be divergent, conditionally convergent or absolutely convergent (test fails). ternating to use it.
- Absolute convergence implies convergence.

The Alternating Series Theorem. If $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ is a convergent alternating series and you used a partial sum s_{n} to approximate the sum s (i.e. $s \approx s_{n}$) then $\left|R_{n}\right| \leq b_{n+1}$.

10.5: Power Series

- For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only 3 possibilities:

1. There is $R>0$ such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$. We call such R the radius of convergence.
2. The series converges only for $x=a$ (then $R=0$).
3. The series converges for all x (then $R=\infty$).

- We find the radius of convergence using the Ratio Test.
- An interval of convergence is the interval of all x 's for which the power series converges.
- You must check the endpoints $x=a \pm R$ individually to determine whether or not they are in the interval of convergence.

10.6: Representation of Functions as Power Series

Key Points

- Geometric Series Formula:

$$
\frac{1}{1-x}=\sum_{n=1}^{\infty} x^{n-1}=\sum_{n=0}^{\infty} x^{n}, \quad-1<x<1 .
$$

- Term-by-term Differentiation and Integration of power series:

If $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is differentiable (and therefore continuous) on the interval $(a-R, a+R)$ and

$$
\begin{aligned}
& -f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
& -\int f(x) \mathrm{d} x=C+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1}
\end{aligned}
$$

The radii of convergence of the power series for $f^{\prime}(x)$ and $\int f(x) \mathrm{d} x$ are both R.

