Chapter 1 Review

$\neg(\forall x \in D, P(x)) \equiv$
$\neg(\exists x \in D \ni P(x)) \equiv$

1. Negate the following statements:
(a) All triangles are isosceles.
(b) Some odd numbers are multiples of three.
(c) The absolute value of the real number x is less than 2016 .
(d) Some angles of a triangle are greater than $\pi / 2$.
(e) Every prime number is greater than two.
(f) The sum of an even number and a prime number is odd.
(g) The square of an even integer is divisible by four.
(h) There is a real-valued function $f(x)$ such that $f(x)$ is not differentiable at any real number x.
(i) If x and y are real numbers such that $x^{3} y^{2}=0$, then $x=0$ or $y=0$.
(j) There exists a rational number r such that $1<r<2$.
(k) Some integers are neither prime nor even.
2. Given a quantified statement

$$
\begin{equation*}
\forall n \in \mathbb{O}, \exists x \in \mathbb{Z} \ni n=4 x+1 \vee n=4 x+3 \tag{1}
\end{equation*}
$$

(a) Express the statement (1) in words.
(b) Express the negation of the statement (1) in symbols. (Do NOT use the symbol \notin.)
3. Prove:

```
''Let }x,y\in\mathbb{Z}\mathrm{ . Then }x\mathrm{ and }y\mathrm{ are of the same parity if and only if
x+y is even.''
```

4. Consider the following statement

$$
\text { ' 'Let } a, b \in \mathbb{Z} \text {. If } a \text { is odd and } a+b \text { is even, then } b \text { is odd. }
$$

(a) Write out the contrapositive statement.
(b) Prove the given statement by direct proof
(c) Prove the given statement by contradiction.

