2. Sets

2.1\&2.2: Sets and Subsets. Combining Sets.

- Set Terminology and Notation

DEFINITIONS:
Set is well-defined collection of objects.
Elements are objects or members of the set.

- Roster notation:
$A=\{a, b, c, d, e\}$ Read: Set A with elements a, b, c, d, e.
- Indicating a pattern:
$B=\{a, b, c, \ldots, z\}$ Read: Set B with elements being the letters of the alphabet.

Set-builder notation:

$B=\{x \mid x$ is a letter of the English alphabet $\}$
$C=\{x \mid x$ is a student in this classroom $\}$
The symbol "" is read "such that".
If a is an element of a set A, we write $a \in A$ that read " a belongs to A." However, if a does not belong to A, we write $a \notin A$.

Very common sets:

- \mathbf{R} is the set of all real numbers;
- $\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$, the set of all integers;
- $\mathbf{Z}^{+}=\{1,2,3, \ldots\}$, the set of all positive integers;
- $\mathbf{N}=\{0,1,2,3, \ldots\}$, the set of all natural numbers;
- Q is the set of all rational numbers;

Application to set definitions

$A=\{x \in S \mid P(x)\}$ is the set of all elements x in S such that the open sentence $P(x)$ is a true statement.

EXAMPLE 1. Use set notation to describe the set of all integers multiples of 5. Then explain why $\{t \in \mathbf{Z} \mid 5 t\}$ is an incorrect way to describe that set.

EXAMPLE 2. a) $\{n \in \mathbf{Z} \mid 3 \leq n<10\}=$
b) $\{x \in \mathbf{R} \mid(x \geq 0) \wedge(x \in \mathbf{Z})\}=$
c) $\{x \in \mathbf{R} \mid-2012 \leq x \leq 2013\}=$

Intervals:

- bounded intervals:

1. closed interval $[a, b]=$
2. open interval $(a, b)=$
3. half-open,half-closed interval $(a, b]=$
4. half-closed,half-open interval $[a, b)=$

- unbounded intervals:

5. $[a, \infty)=$
6. $(a, \infty)=$
7. $(-\infty, a]=$
8. $(-\infty, a)=$
9. $(-\infty, \infty)=$
infinite set
finite set
cardinality of $A,|A|$

Subsets

Two sets, A and B , are equal, written $A=B$, if and only if they have exactly the same elements. (NOTE: they do not have to be in the same order!). If every element in set A is also an element in set B, then A is a subset of B, written $A \subseteq B$. If $A \subseteq B$, but $A \neq B$, then A is a proper subset of B, written $A \subset B$.

EXAMPLE 3. Given

$$
\begin{aligned}
A & =\{a, e, i, o, u\} \\
B & =\{u, i, e, a, o\} \\
C & =\{a, e, i, o\} \\
D & =\{e, i, o, a\}
\end{aligned}
$$

EXAMPLE 4. Which of the following are TRUE?

1. $\mathbf{Z}^{+} \subset \mathbf{Z}$
2. $\mathbf{Z}^{+} \subseteq \mathbf{Z}$
3. $\mathbf{N} \subseteq \mathbf{Z}^{+}$
4. $\mathrm{Z} \subset \mathbf{Q} \subseteq \mathbf{R}$

The empty set is the set that doesn't have any elements, denoted by \emptyset or $\}$. The universal set is the set that contains all of the elements for a problem, denoted by U.

EXAMPLE 5. Give all the subsets for these sets.
(a) $A=\{0,1\}$
(b) $X=\{a, b, y\}$

EXAMPLE 6. List all elements of the following set:

$$
\{x \in \mathbf{R} \mid \sin x=2\}
$$

EXAMPLE 7. Given $A=\{0,1,2, \ldots, 8\}, B=\{1,3,5,7\}, C=\{3,5,1,7\}$, and $D=\{5,3,1\}$, $E=\emptyset$ then which of the following are TRUE?
(a) $B=C$
(b) $B \subseteq C$
(c) $B \subset C$
$(\mathbf{d}) C \subseteq B$
(e) $D \subset B$
$(\mathbf{f}) D \subseteq B$
$(\mathrm{g}) B \subset D$
(h) $8 \in A$
(i) $\{4,6\} \subset A$
(j) $1,5 \subset A$
(k) $9 \notin C$
(l) $D \subseteq D$
$(\mathbf{m}) \emptyset=0$
$(\mathbf{n}) 0 \in E$
(o) $A \in A$

VENN DIAGRAMS - a visual representation of sets (the universal set U is represented by a
rectangle, and subsets of U are represented by regions lying inside the rectangle).
EXAMPLE 8. Use Venn diagrams to illustrate the following statements:
(a) $A=B$

(b) $A \subset B$
(c) A and B are not subsets of each other.

- OPERATIONS OF SETS

Let A and B be sets. The union of A and B, written $A \cup B$, is the set of all elements that belong to either A or B or both. Symbolically:

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

Let A and B be sets. The intersection of A and B, written $A \cap B$, is the set of all elements in common with A and B. Symbolically:

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

DEFINITION 9. Let A and B be sets. The complement of A in B denoted $B-A$, is $\{b \in B \mid b \notin A\}$.

REMARK 10. For convenience, if U is a universal set and A is a subset in U, we will write $U-A=\bar{A}$, called simply the complement of A.

EXAMPLE 11. Find \bar{U} and $\bar{\emptyset}$.

EXAMPLE 12. Shade the Venn diagrams below to represent the following sets
(a) $A \cup \bar{B}$
(b) $\bar{A} \cap B$
(c) $(A \cap B) \cup C$
(d) $\overline{(A \cup B)} \cap C$

EXAMPLE 13. Use these sets to find the following: $U=\{0,1,2, \ldots, 9,10\}, A=\{0,2,4,6,8,10\}$, $B=\{1,3,5,7,9\}, C=\{0,3,4,5,7\}, D=\{0,6,7,9\}, E=\{1,3,8,9\}$
(a) $B \cup D$
(b) $A \cup B$
(c) \bar{C}
(d) $D-E$
(e) $E-D$

EXAMPLE 14. Use set notation to reformulate the following theorem: "Every real-valued continuous function on $[a, b]$ is integrable on $[a, b]$." Also describe a universal set. Discuss the converse statement.

THEOREM 15. Let A and B be sets contained in some universal set U. Then $A \subseteq B$ if and only if $\bar{B} \subseteq \bar{A}$.

Proving set properties

Use the following tautologies:

- $x \in A \cap B \Leftrightarrow(x \in A \wedge x \in B)$
- $x \in A \cup B \Leftrightarrow$
- $x \in A-B \Leftrightarrow$
- $A=B \Rightarrow(x \in A \Leftrightarrow x \in B)$
- $A \subseteq B \Rightarrow(x \in A \Rightarrow x \in B)$

Question: Let $A=\{n \in \mathbf{Z} \mid n$ is even $\}$ and $B=\left\{n \in \mathbf{Z} \mid n^{2}\right.$ is even $\}$. Are these sets the same?

Methods:

- To prove $A \subseteq B$ it is sufficient to prove $x \in A \Rightarrow x \in B$.
- To prove $A=B$ it is sufficient to prove $x \in A \Leftrightarrow x \in B$.
- To prove $A=B$ it is sufficient to prove $A \subseteq B$ and $B \subseteq A$.
- To show that $A=\emptyset$ it is sufficient to show that $x \in A$ implies a false statement.

EXAMPLE 16. Let A and B be sets. Show that $(A-B) \cap B=\emptyset$.

PROPOSITION 17. Let A, B, and C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Then $A \subseteq C$.

Fundamental properties of sets

THEOREM 18. The following statements are true for all sets A, B, and C.

1. $A \cup B=B \cup A$ (commutative)
2. $A \cap B=B \cap A$ (commutative)
3. $(A \cup B) \cup C=A \cup(B \cup C)$ (associative)
4. $(A \cap B) \cap C=A \cap(B \cap C)$ (associative)
5. $A \subseteq A \cup B$.
6. $A \cap B \subseteq A$.
7. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ (distributive)
8. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ (distributive)
9. The empty set is a subset of every set (i.e. $\emptyset \subset A$).
10. $A \cup \emptyset=A$.
11. $A \cap \emptyset=\emptyset$.

DeMorgan's Laws: If A and B are the sets contained in some universal set U then
12. $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
13. $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

EXAMPLE 19. Let A and B be subsets of a universal set U. Then $A \subseteq B \Leftrightarrow A \cup B=B$.
(a) Criticize the proposed "proof" of the above result:

Let $x \in A \subseteq B$. Then $x \in A$ and B, so $x \in A \cup B$ and $A \cup B=B$.
Let $x \in A \cup B=B$ then $x \in A$ or $x \in B$ and $x \in B$. Therefore $A \subseteq B$.
(b) Prove the above result.

Cartesian Product

DEFINITION 20. Let A and B be sets. The Cartesian product of A and B, written $A \times B$, is the following set:

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Informally, $A \times B$ is the set of ordered pairs of objects.
EXAMPLE 21. Given $A=\{0,1\}$ and $B=\{4,5,6\}$.
(a) Does the pair $(6,1)$ belong to $A \times B$?
(b) List the elements of $A \times B$.
(c) What is the cardinality of $A \times B$?

EXAMPLE 22. Describe the following sets $R \times R, R \times R \times R$.

2.3 Collections of Sets

- Power set

DEFINITION 23. Let A be a set. The power set of A, written $P(A)$, is

$$
P(A)=\{X \mid X \subseteq A\}
$$

EXAMPLE 24. Let $A=\{-1,0,1\}$.

1. Write all subsets of A.
2. Find all elements of power set of A.
3. Find $|P(A)|$.
4. Write 3 subsets of $P(A)$.
5. Find $|P(P(A))|$.
6. Find $P(\emptyset)$ and $P(\{-1\})$.

- Indexed Sets

DEFINITION 25. Let I be a set. An indexed collection of set $\left\{A_{\alpha}\right\}_{\alpha \in I}$ represents a collection of sets such that for every $\alpha \in I$, there is a corresponding set A_{α}. In this case we call I the indexed set.

- Union and Intersection

EXAMPLE 26. Negate the following statement forms.
(a) $x \in \bigcup_{\alpha \in I} A_{\alpha} \Leftrightarrow \exists \alpha \in I \ni x \in A_{\alpha}$
(b) $x \in \bigcap_{\alpha \in I} A_{\alpha} \Leftrightarrow \forall \alpha \in I, x \in A_{\alpha}$

EXAMPLE 27. Given $B_{i}=\{i, i+1\}$ for $i=1,2, \ldots, 10$. Determine the following
(a) $\bigcap_{i=1}^{10} B_{i}$
(b) $B_{i} \cap B_{i+1}$
(c) $\bigcap_{i=k}^{k+1} B_{i}$ where $1 \leq k<10$.
(d) $\bigcap_{i=j}^{k} B_{i}$ where $1 \leq j<k \leq 10$.

EXAMPLE 28. $A_{n}=\left\{x \in \mathbf{R}:-\frac{1}{n} \leq x \leq \frac{1}{n}, \quad n \in \mathbf{Z}^{+}\right\}$. Find $\bigcup_{n \in \mathbf{Z}^{+}} A_{n}$ and $\bigcap_{n \in \mathbf{Z}^{+}} A_{n}$.

- Partitions of sets

Disjoint sets

Mutually(pairwise) disjoint

DEFINITION 29. A partition \mathcal{P} of A is a subset of the power set $P(A)$ such that

1. $X \in \mathcal{P} \Rightarrow X \neq \emptyset$
2. $\bigcup_{X \in \mathcal{P}} X=A$
3. If $X, Y \in \mathcal{P}$ and $X \neq Y$ then $X \bigcap Y=\emptyset$.

EXAMPLE 30. Determine which of these sets are partitions of $A=\{1,2,3,4,5,6\}$:

$$
\begin{aligned}
& \mathcal{P}_{1}=\{\{1,3,6\},\{2,4\},\{5\}\} \\
& \mathcal{P}_{2}=\{\{1,2,3\},\{4\}, \emptyset,\{5,6\}\} \\
& \mathcal{P}_{3}=\{\{1,2\},\{3,4,5\},\{5,6\}\} \\
& \mathcal{P}_{4}=\{\{1,4\},\{3,5\},\{2\}\}
\end{aligned}
$$

EXAMPLE 31. Let $A=2 \mathbf{Z}$ and $B=\{n \in \mathbf{Z} \mid n=2 t+1$ for some $t \in \mathbf{Z}\}$. Show that $\{A, B\}$ is a partition of \mathbf{Z}.

EXAMPLE 32. Give an example of a partition for $A=\{1,2, \ldots, 12\}$ such that $|\mathcal{P}|=5$.

EXAMPLE 33. Give an example of a partition for \mathbf{R}.

THEOREM 34. Let A and B be finite disjoint sets. Then

$$
|A \cup B|=|A|+|B| .
$$

COROLLARY 35. Let A and B be finite sets. Then

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

COROLLARY 36. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a collection of finite mutually disjoint sets. Then

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{i=1}^{n}\left|A_{i}\right| .
$$

