3 FUNCTIONS

3.1 Definition and Basic Properties

DEFINITION 1. Let A and B be nonempty sets. A function from A to B is a rule that assigns to each element in the set A one and only one element in the set B.

We call A the domain of f and B the codomain of f.
We write $f: A \rightarrow B$ and for each $a \in A$ we write $f(a)=b$ if b is assigned to a.
Using diagram

DEFINITION 2. Two functions f and g are equal if they have the same domain and the same codomain and if $f(a)=g(a)$ for all a in domain.

EXAMPLE 3. Let $A=\{2,4,6,10\}$ and $B=\{0,1,-1,8\}$. Write out three functions with domain A and codomain B.

Some common functions

- Identity function $i_{A}: A \rightarrow A$ maps every element to itself:
- Linear function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by
- Constant function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

Image of a Function

EXAMPLE 4. Discuss codomain of $f(x)=x^{4}$.

DEFINITION 5. Let $f: A \rightarrow B$ be a function. The image of f is

$$
\operatorname{Im}(f)=\{y \in B \mid y=f(x) \text { for some } \quad x \in A\}
$$

EXAMPLE 6. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\cos x$ and $g(x)=|\cos x|$. Find $\operatorname{Im}(f)$ and $\operatorname{Im}(g)$.

Image of a Set

DEFINITION 7. Let $f: A \rightarrow B$ be a function. If $X \subseteq A$, we define $f(X)$, the image of X under f, by

$$
f(X)=\{y \in B \mid y=f(x) \quad \text { for } \text { some } \quad x \in X\}
$$

Question: Let $f: A \rightarrow B$ be a function. What is $f(A)$?
EXAMPLE 8. $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=\cos x$. Find $f([-\pi / 2, \pi / 2])$.

Inverse Image

DEFINITION 9. Let $f: A \rightarrow B$ be a function and let W be a subset of its codomain (i.e. $W \subseteq B$). Then the inverse image of W (written $f^{-1}(W)$) is the set

$$
f^{-1}(W)=\{a \in A \mid f(a) \in W\}
$$

EXAMPLE 10. Let $A=\{a, b, c, d, e, f\}$ and $B=\{7,9,11,12,13\}$ and let the function $g: A \rightarrow B$ be given by

$$
g(a)=11, g(b)=9, g(c)=9, g(d)=11, g(e)=9, g(f)=7
$$

Find
$f^{-1}(\{7,9\})=$
$f^{-1}(\{12,13\})=$
$f^{-1}(\{11,12\})=$

Summary

Let $f: A \rightarrow B$. The above definitions imply the following tautologies

- $(y \in \operatorname{Im}(f)) \Leftrightarrow(\exists x \in A \ni f(x)=y)$.
- $(y \in f(X)) \Leftrightarrow(\exists x \in X \ni f(x)=y)$.
- $\left(x \in f^{-1}(W)\right) \Leftrightarrow(f(x) \in W)$.
- If $W \subseteq \operatorname{Im}(f)$ then $\left(S=f^{-1}(W)\right) \Rightarrow(f(S)=W)$.

EXAMPLE 11. Let $S=\{y \in \mathbb{R} \mid y \geq 0\}$. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x^{4}$ then $\operatorname{Im}(f)=S$.

EXAMPLE 12. $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=5 x-4$. Find $f([0,1])$. Justify your answer.

EXAMPLE 13. $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=3 x+4$. Let $W=\{x \in \mathbb{R} \mid x>0\}$. Find $f^{-1}(W)$.

EXAMPLE 14. $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by

$$
f(n)=\left\{\begin{array}{llll}
n-1 & \text { if } n & \text { is even } \\
n+1 & \text { if } n & \text { is odd }
\end{array}\right.
$$

Prove that $f(\mathbb{E})=\mathbb{O}$.

EXAMPLE 15. $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by

$$
f(n)= \begin{cases}n / 2 & \text { if } n \in \mathbb{E} \\ n+1 & \text { if } n \in \mathbb{O}\end{cases}
$$

Compute
(a) $f^{-1}(\{6,7\})=$
(b) $f^{-1}(\mathbb{O})$

PROPOSITION 16. Let A and B be nonempty sets and $f: A \rightarrow B$ be a function. If $X \subseteq Y \subseteq A$ then $f(X) \subseteq f(Y)$.

Proof.

PROPOSITION 17. Let A and B be nonempty sets and $f: A \rightarrow B$ be a function. If $X \subseteq A$ and $Y \subseteq A$ then
(a) $f(X \cup Y)=f(X) \cup f(Y)$.
(b) $f(X \cap Y) \subseteq f(X) \cap f(Y)$.

Proof

PROPOSITION 18. Let A and B be nonempty sets and $f: A \rightarrow B$ be a function. If W and V are subsets of B then
(a) $f^{-1}(W \cup V)=f^{-1}(W) \cup f^{-1}(V)$.
(b) $f^{-1}(W \cap V)=f^{-1}(W) \cap f^{-1}(V)$.

Section 3.2 Surjective and Injective Functions

Surjective functions ("onto")

DEFINITION 19. Let $f: A \rightarrow B$ be a function. Then f is surjective (or a surjection) if the image of f coincides with its codomain, i.e.

$$
\operatorname{Im} f=B
$$

Note: surjection is also called "onto".
Proving surjection:
We know that for all $f: A \rightarrow B$: \qquad
Thus, to show that $f: A \rightarrow B$ is a surjection it is sufficient to prove that
In other words, to prove that $f: A \rightarrow B$ is a surjective function it is sufficient to show that

EXAMPLE 20. Determine which of the following functions are surjective.
(a) Identity function
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{4}$.
(c) $g: \mathbb{R} \rightarrow \mathbb{R}^{+} \cup\{0\}, g(x)=x^{4}$.
(d) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(n)=\left\{\begin{array}{cll}n-2 & \text { if } & n \in \mathbb{E}, \\ 2 n-1 & \text { if } & n \in \mathbb{O} \text {. }\end{array}\right.$
(e) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(n)=\left\{\begin{array}{lll}n+1 & \text { if } & n \in \mathbb{E}, \\ n-3 & \text { if } & n \in \mathbb{O} .\end{array}\right.$

Injective functions ("one to one")

DEFINITION 21. Let $f: A \rightarrow B$ be a function. Then f is injective (or an injection) if whenever $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$, we have $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.

Note: surjection is also called "onto". Using diagram:

EXAMPLE 22. Given $A=\{1,2,3\}$ and $B=\{3,4,5\}$.
(a) Write out an injective function with domain A and codomain B. Justify your answer.
(b) Write out a non injective function with domain A and codomain B. Justify your answer.

Proving injection:
Let $P\left(a_{1}, a_{2}\right): a_{1} \neq a_{2}$ and $Q\left(a_{1}, a_{2}\right): \forall f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
Then by definition f is injective if \qquad .

Using contrapositive, we have \qquad .
In other words, to prove injection show that:

EXAMPLE 23. Determine which of the following functions are injective. Give a formal proof of your answer.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\sqrt[5]{x}$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{4}$.
(c) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(n)=\left\{\begin{array}{cll}n / 2 & \text { if } & n \in \mathbb{E}, \\ 2 n & \text { if } & n \in \mathbb{O} .\end{array}\right.$
(d) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=3 x^{5}+5 x^{3}+2 x+2014$.

Bijective functions

DEFINITION 24. A function that is both surjective and injective is called bijective (or bijection.)
EXAMPLE 25. Determine which of the following functions are bijective.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$.

EXAMPLE 26. Prove that $f: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{3\}$ defined by $f(x)=\frac{3 x}{x-2}$ is bijective.

3.3 Composition and Invertible Functions

DEFINITION 27. Let A and B be nonempty sets. We define

$$
F(A, B)=
$$

the set of all functions from A to B.
If $A=B$, we simply write $F(A)$.

Composition of Functions

DEFINITION 28. Let A, B, and C be nonempty sets, and let $f \in F(A, B), g \in F(B, C)$. We define a function

$$
g f \in F(A, C)
$$

called the composition of f and g, by

$$
g f(a)=
$$

EXAMPLE 29. Let $f, g \in \mathbf{R}$ be defined by $f(x)=e^{x}$ and $g(x)=x \sin x$. Find $f g$ and $g f$.

EXAMPLE 30. Let $A=\mathbf{R}-\{0\}$ and $f \in F(A)$ is defined by $f(x)=1-\frac{1}{x}$ for all $x \in \mathbf{R}$. Determine fff.

EXAMPLE 31. Let $f, g \in F(\mathbf{Z})$ be defined by

$$
f(n)=\left\{\begin{array}{ll}
n+4, & \text { if } n \in \mathbf{E} \\
2 n-3, & \text { if } n \in \mathbf{O}
\end{array} \quad g(n)= \begin{cases}2 n-4, & \text { if } n \in \mathbf{E} \\
(n-1) / 2, & \text { if } n \in \mathbf{O}\end{cases}\right.
$$

Find $g f$ and $f g$.

PROPOSITION 32. Let $f \in F(A, B)$ and $g \in F(B, C)$. Then
i. If f and g are surjections, then $g f$ is also a surjection.

Proof.
ii. If f and g are injections, then $g f$ is also an injection.

Proof.

COROLLARY 33. If f and g are bijections, then $g f$ is also a bijection.

PROPOSITION 34. Let $f \in F(A, B)$. Then $f i_{A}=f$ and $i_{B} f=f$.

Inverse Functions

DEFINITION 35. Let $f \in F(A, B)$. Then f is invertible if there is a function $f^{-1} \in F(B, A)$ such that

$$
f^{-1} f=i_{A} \quad \text { and } \quad f f^{-1}=i_{B}
$$

If f^{-1} exists then it is called the inverse function of f.
REMARK 36. f is invertible if and only if f^{-1} is invertible.

PROPOSITION 37. The inverse function is unique.
Proof.

EXAMPLE 38. The function $f: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{3\}$ defined by $f(x)=\frac{3 x}{x-2}$ is known to be bijective (see Example 26, Section 3.2). Determine the inverse $f^{-1}(x)$, where $x \in \mathbb{R}-\{3\}$.

REMARK 39. Finding the inverse of a bijective function is not always possible by algebraic manipulations. For example,
if $f(x)=e^{x}$ then $f^{-1}(x)=$ \qquad
The function $f(x)=3 x^{5}+5 x^{3}+2 x+2014$ is known to be bijective, but there is no way to find expression for its inverse.

THEOREM 40. Let A and B be sets, and let $f \in F(A, B)$. Then f is invertible if and only if f is bijective.

