5 FUNCTIONS

5.1 Definition and Basic Properties

DEFINITION 1. Let X and Y be nonempty sets. A function f from the set X to the set Y is a correspondence that assigns to each element x in the set X one and only one element y in the set Y, which is denoted by f(x).

We call X the domain of f and Y the codomain of f.

If $x \in X$ and $y \in Y$ are such that y = f(x), then y is called the **value** of f at x, or the **image** of x under f. We may also say that f **maps** x to y.

Using diagram

DEFINITION 2. Two functions f and g are equal if they have the same domain and the same codomain and if f(x) = g(x) for all x in domain.

DEFINITION 3. The graph of $f: X \to Y$ is the set

$$G_f = \{(x, y) \in X \times Y | y = f(x) \}.$$

- We can determine a function from its domain, codomain, and graph.
- We can describe a function by formula, by listing its values, or by words.

EXAMPLE 4. Let $X = \{2, 4, 6\}$ and $Y = \{a, b, c, d\}$. Determine in which of the following cases, f is function from X to Y.

(a)
$$f(2) = b, f(4) = a, f(6) = d$$

(b)
$$f(2) = c, f(4) = c, f(6) = c$$

(c)
$$f(2) = a, f(4) = b, f(6) = c, f(4) = d$$

(d)
$$f(2) = c, f(6) = d$$

Some common functions

- Identity function $I_X: X \to X$ maps every element to itself:
- Polynomial of degree n with real coefficients a_0, a_1, \ldots, a_n is a function from \mathbb{R} to \mathbb{R}

Polynomials of degrees 0,1,2,3 are constant, linear, quadratic, cubic, respectively.

EXAMPLE 5. Let $f: X \to Y$ be defined by $f(x) = x^3 + 3$. In each of the following cases find its graph and illustrate it.

(a)
$$X = Y = \mathbb{R}$$

(b)
$$X = \{-1, 0, 1\}, Y = \mathbb{R}$$

Range (or Image) of a Function

DEFINITION 6. Let $f: X \to Y$ be a function. The range of f (also called the **image** of f) is the set $\{y \in Y | y = f(x) \text{ for some } x \in X\}$.

We denote the range (or image) of the function f by ran f (or Im f).

EXAMPLE 7. Let $f: X \to Y$ be a function. Using symbols complete the following

- $ran f \subseteq \underline{\hspace{1cm}}$
- $\forall y \in Y, y \in \operatorname{ran} f \Leftrightarrow \underline{\hspace{1cm}}$
- $y \notin \operatorname{ran} f \Leftrightarrow \underline{\hspace{1cm}}$

EXAMPLE 8. $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \cos x$. Find ran f.

EXAMPLE 9. Let $f: [\frac{1}{3}, \infty) \to \mathbb{R}$ be defined by $f(x) = \sqrt{3x-1}$ and $S = \{y \in \mathbb{R} | y \ge 0\}$. Prove that ran f = S.

5.2 Composition of Functions

DEFINITION 10. Let A, B, and C be nonempty sets, and let $f: A \to B$, $g: B \to C$. We define a function

$$g \circ f : A \to C$$
,

called the **composition** of f and g, by

$$(g \circ f)(a) =$$

Using diagram

EXAMPLE 11. Let $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d\}$, $C = \{r, s, t, u, v\}$ and define the functions $f : A \rightarrow B$, $g : B \rightarrow C$ by their graphs:

$$G_f = \{(1, b), (2, d), (3, a), (4, a)\}, \qquad G_g = \{(a, u), (b, r), (c, r), (d, s)\}.$$

Find $g \circ f$. What about $f \circ g$?

EXAMPLE 12. Let $f, g : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^x$ and $g(x) = x \sin x$. Find $f \circ g$ and $g \circ f$.

PROPOSITION 13. Let $f: A \to B$, $g: B \to C$, and $h: C \to D$. Then

$$(h \circ g) \circ f = h \circ (g \circ f),$$

i.e. composition of functions is associative.

Proof.

Section 5.3 Surjective (or onto) and Injective (or one-to-one) Functions Surjective functions ("onto")

DEFINITION 14. Let $f: X \to Y$ be a function. Then f is surjective (or a surjection) if the range of f coincides with its codomain, i.e.

$$ran f = Y$$
.

Note: surjection is also called "onto".	
Proving surjection:	
We know that for all $f: X \to Y$:	
Thus, to show that $f: X \to Y$ is a surjection it is sufficient to prove that	
In other words,	
to prove that $f: X \to Y$ is a surjective function it is sufficient to show that	

Question: How to disprove surjectivity?

EXAMPLE 15. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to [0, \infty)$ defined by $f(x) = g(x) = x^4$. Determine whether the following are true

- (a) ran f = ran(g)
- **(b)** f = g
- (c) f is surjective
- (d) g is surjective

EXAMPLE 16. Prove that the function $f: \mathbb{R} - \{2\} \to \mathbb{R} - \{3\}$ defined by $f(x) = \frac{3x}{x-2}$ is surjective.

Injective functions ("one to one")

DEFINITION 17. Let $f: X \to Y$ be a function. Then f is **injective** (or an injection) if whenever $x_1, x_2 \in X$ and $x_1 \neq x_2$, we have $f(x_1) \neq f(x_2)$.

In other words, f is injective if and only if the ranges of every two distinct points in the domain of f are distinct.

EXAMPLE 18. Given $X = \{1, 2, 3\}$ and $Y = \{3, 4, 5\}$. Determine whether the following functions are injective. Justify your answer.

(a)
$$f: X \to Y$$
 defined by $G_f = \{(1,3), (2,4), (3,5)\}$

(b)
$$g: X \to Y$$
 defined by $G_g = \{(1,5), (2,4), (3,4)\}$

Proving injection:

Let $P(x_1, x_2) : x_1 \neq x_2$ and $Q(x_1, x_2) : f(x_1) \neq f(x_2)$.

Then by definition f is injective if ______.

Using contrapositive, we have ______

In other words, to prove injection show that:

Question: How to disprove injectivity?

EXAMPLE 19. Prove or disprove injectivity of the following functions.

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \sqrt[5]{x}$.

(b)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^4.$$

(c)
$$f: \mathbb{Z} \to \mathbb{Z}$$
, $f(n) = \begin{cases} n/2 & \text{if} \quad n \in \mathbb{E}, \\ 2n & \text{if} \quad n \in \mathbb{O}. \end{cases}$

(d)
$$f: \mathbb{Z} \to \mathbb{Z}$$
, $f(n) = \begin{cases} n & \text{if } n \in \mathbb{E}, \\ 5n & \text{if } n \in \mathbb{O}. \end{cases}$

Discussion Exercise.

• Must a strictly increasing or decreasing function be injective?

• Must an injective function be strictly increasing or decreasing?

EXAMPLE 20. Prove or disprove injectivity of the following functions. In each case, $f: \mathbb{R} \to \mathbb{R}$.

(a)
$$f(x) = 3x^5 + 5x^3 + 2x + \pi$$
.

(b)
$$f(x) = x^{12} + x^8 - x^4 + 12$$
.

Bijective functions

DEFINITION 21. A function that is both surjective and injective is called **bijective** (or bijection.) Complete the following.

- f is not bijective \Leftrightarrow
- f is surjective \Leftrightarrow (codom $f \subseteq ___$) \Leftrightarrow ($\forall y, y \in \text{codom} f \Rightarrow ____$) \Leftrightarrow ($\forall y, y \in \text{codom} f \Rightarrow \exists x \in \text{dom} f ____$) \Leftrightarrow ($\forall y, y \in \text{codom} f, \exists x \in \text{dom} f ____$)

 In other words, f is surjective if and only if every point in codomf has a preimage in the domf.

If in addition f is injective, then we obtain

f is bijective ⇔ (∃! x ∈ domf______)
 In other words, f is bijective if and only if every point in codomf has a <u>unique</u> preimage in the domf.

EXAMPLE 22. Determine which of the following functions are bijective.

(a)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^3.$$
 (b) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2.$

PROPOSITION 23. Let $f: A \to B$ and $g: B \to C$. Then

 $\mbox{i. If f and g are surjections, then $g \circ f$ is also a surjection. } \\ \mbox{Proof.}$

 $\mbox{ii. If f and g are injections, then $g\circ f$ is also an injection.} \\ \mbox{Proof.}$

COROLLARY 24. If f and g are bijections, then $g \circ f$ is also a bijection.

PROPOSITION 25. Let $f: X \to Y$. Then $f \circ I_X = f$ and $I_Y \circ f = f$.

5.4 Invertible Functions

Inverse Functions

DEFINITION 26. Let $f: X \to Y$ be a function. We say that f is **invertible** if there is a function $g: Y \to X$ such that for all $x \in X$ and for all $y \in Y$,

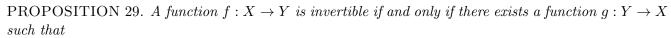
$$y = f(x) \Leftrightarrow x = g(y).$$

We say that such a function g is an inverse function of f.

Question: What is the inverse of g?

REMARK 27. f is invertible if and only if its inverse is invertible.

EXAMPLE 28. Show that the function $f: \mathbb{R} - \{2\} \to \mathbb{R} - \{3\}$ defined by $f(x) = \frac{3x}{x-2}$ is invertible and find its inverse function. (Note that the given function is bijective.)



$$g \circ f = I_X$$
 and $f \circ g = I_Y$.

PROPOSITION 30. The inverse function is unique.

Proof.

Notation

When $f: X \to Y$ is invertible, the unique inverse function is denoted by f^{-1} , and $f^{-1}: Y'X$.

REMARK 31. Finding the inverse of a bijective function is not always possible by algebraic manipulations. For example,

if
$$f(x) = e^x$$
 then $f^{-1}(x) = _____$

The function $f(x) = 3x^5 + 5x^3 + 2x + 220$ is known to be bijective, but there is no way to find expression for its inverse.

THEOREM 32. A function $f: A \to B$ is invertible if and only if f is bijective.