5.5 FUNCTIONS AND SETS

Image of a Set

DEFINITION 1. Let $f: X \to Y$ be a function. If $A \subseteq X$, we define f(A), the image of A under f, by

 $f(A) = \left\{ y \in B | y = f(x) \text{ for some } x \in A \right\}.$

EXAMPLE 2. Let $f : X \to Y$. Complete:

- (a) If $A \subseteq X$ then $f(A) \subseteq$
- (b) f(X) =____
- (c) $y \in f(A) \Leftrightarrow$
- (d) $y \notin f(A) \Leftrightarrow$

EXAMPLE 3. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \cos x$. Find the following

- (a) $f([-\pi/2,\pi/2])$
- **(b)** $f([-\pi/2,0])$
- (c) $f([-\pi/2,\pi/2017])$
- (d) $f([-\pi/4,\pi/4])$
- (e) Does $-\frac{1}{2017}$ belong to $f([-\pi/2, \pi/2])$?

Inverse Image

DEFINITION 4. Let $f : X \to Y$ be a function and let B be a subset of its codomain (i.e. $B \subseteq Y$). Then the **inverse image** of B (written $f^{-1}(B)$) is the set

$$f^{-1}(B) = \{ x \in X | f(x) \in B \}$$

The inverse image $f^{-1}(B)$ is a subset of domain of f containing all preimages of points from B under f.

EXAMPLE 5. Let $f : X \to Y$ and $B \subseteq Y$. Complete:

- (a) $f^{-1}(B) \subseteq \underline{\qquad} \subseteq \underline{\qquad}$
- (b) $x \in f^{-1}(B) \Leftrightarrow$
- (c) $x \notin f^{-1}(B) \Leftrightarrow$
- (d) If $x \in X$ and $y \in Y$, then

 $f(x) \underline{\qquad} Y, \quad f(\{x\}) \underline{\qquad} Y, \quad , f^{-1}(y) \underline{\qquad} X, \quad f^{-1}(\{y\}) \underline{\qquad} X,$

EXAMPLE 6. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^4$. Find the following:

- (a) f([1,2]) =
- **(b)** f([-2, -1]) =
- (c) $f^{-1}([1, 16]) =$
- (d) $f^{-1}([-16, -1]) =$
- (e) $f^{-1}([-1,1]) =$
- (f) $f((-\infty,\infty)) =$
- (g) $f^{-1}(\mathbb{R}) =$
- (h) $f^{-1}(\mathbb{R}^+) =$
- (i) $f(f^{-1}([-16, -1])) =$
- (j) $f(f^{-1}([-1,1])) =$

EXAMPLE 7. Let $A \subseteq \text{dom}(f)$ and $B \subset \text{codom}(f)$. Determine the truth or falsehood of the following (a) $f^{-1}(f(A)) = A$

(b) $f(f^{-1}(B)) = B$

EXAMPLE 8. Let $A_1, A_2 \subseteq \text{dom}(f)$. Determine the truth or falsehood of the following $f(A_1) \cap f(A_2) = f(A_1 \cap A_2)$

Summary

Let $f: X \to Y$ and $A \subseteq X$ and $B \subseteq Y$. Then above definitions imply the following tautologies

- $\forall y \in Y, ((y \in \operatorname{ran}(f)) \Leftrightarrow (\exists x \in X \ni f(x) = y)).$
- $\forall y \in Y, ((y \in f(A)) \Leftrightarrow (\exists x \in A \ni f(x) = y)).$
- $\forall x \in X, ((x \in f^{-1}(B)) \Leftrightarrow (f(x) \in B)).$

Also note that

• If $B \subseteq \operatorname{ran}(f)$ then $(S = f^{-1}(B)) \Rightarrow (f(S) = B)$.

EXAMPLE 9. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x + 4 and let $B = \{x \in \mathbb{R} | x > 0\}$. Find $f^{-1}(B)$. Justify your answer (give a formal proof).

EXAMPLE 10. $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 5x - 4. Find f([0,1]). Justify your answer (give a formal proof).

PROPOSITION 11. Let $f: X \to Y$. If $A_1 \subseteq A_2 \subseteq X$ then $f(A_1) \subseteq f(A_2)$.

Proof.

PROPOSITION 12. Let $f: X \to Y$. If B_1 and B_2 are subsets of Y then $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2).$

Proof.

EXAMPLE 13. (cf. Example 8.) Let $f: X \to Y$ and A_1 and A_2 be subsets of X. (a) Prove that $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$.

(b) Prove that if, in addition, f is an injective function, then $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$.

EXAMPLE 14. (cf. Example 7.) Let $f: X \to Y$ and B be a subset of Y.

(a) Prove that $f(f^{-1}(B)) \subseteq B$.

(b) Prove that if, in addition, f is an surjective function, then $f(f^{-1}(B) = B$.