6: An introduction to Number Theory

6.1 The Division ALgorithm and the Well-Ordering Principle.

The Well Ordering Principle (WOP):
Every nonempty subset on \mathbb{Z}^{+}has a smallest element; that is, if S is a nonempty subset of Z^{+}, then there exists $a \in S$ such that $a \leq x$ for all $x \in S$.

THEOREM 1. (First Principle of Mathematical Induction) Let $P(n)$ be a statement about the positive integer n. Suppose that $P(1)$ is true. Whenever k is a positive integer for which $P(k)$ is true, then $P(k+1)$ is true. Then $P(n)$ is true for every positive integer n.

Proof.

Paradox: All horses are of the same color.
Question: What's wrong in the following "proof" of G. Pólya?
$P(n):$ Let $n \in \mathbb{Z}^{+}$. Within any set of n horses, there is only one color.
Basic Step. If there is only one horse, there is only one color.
Induction Hypothesis. Assume that within any set of k horses, there is only one color.
Inductive step. Prove that within any set of $k+1$ horses, there is only one color.
Indeed, look at any set of $k+1$ horses. Number them: $1,2,3, \ldots, k, k+1$. Consider the subsets $\{1,2,3, \ldots, k\}$ and $\{2,3,4, \ldots, k+1\}$. Each is a set of only k horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all $k+1$ horses.

THEOREM 2. (Division Algorithm) Let $a \in \mathbb{Z}, b \in \mathbb{Z}^{+}$. Then there exist unique integers q and r such that

$$
a=b q+r, \quad \text { where } \quad 0 \leq r<b .
$$

EXAMPLE 3. (a) Rewrite the Division Algorithm using symbols.
(b) Let $a=33, b=7$. Determine q and r.
(b) Let $a=-33, b=7$. Determine q and r.

COROLLARY 4. Let $b \in \mathbb{Z}^{+}$. Then for every integer a there exists a unique integer q such that exactly one of the following holds:

$$
a=b q, \quad a=b q+1, \quad a=b q+2, \ldots, a=b q+(b-1) .
$$

COROLLARY 5. Every integer is either even, or odd.

EXAMPLE 6. Prove that the square of any integer has one of the forms $4 k$ or $4 k+1$, where $k \in \mathbb{Z}$.

6.2 Greatest common divisors and the Euclidean Algorithm

DEFINITION 7. Let a and b be integers, not both zero. The greatest common divisor of a and b (written $\operatorname{gcd}(a, b)$, or $(a, b))$ is the largest positive integer d that divides both a and b.

EXAMPLE 8. Find $\operatorname{gcd}(18,24)$.

EXAMPLE 9. (a) Compute

$$
\operatorname{gcd}(-18,24)=\quad \operatorname{gcd}(-24,-18)=
$$

and make a conclusion.
(b) Compute

$$
\operatorname{gcd}(5,0)=\quad \operatorname{gcd}(-5,0)=
$$

and make a conclusion.
(c) Complete the statement: If $a \neq 0$ and $b \neq 0$, then $\operatorname{gcd}(a, b) \leq$ \qquad
(d) Let $c \in \mathbb{Z}$. Then $\operatorname{gcd}(a, a c)=$ \qquad
Euclidean Algorithm is based on the following
LEMMA 10. Let a and b be integers, not both zero. Suppose we have integers q and r such that $a=b q+r$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Procedure for finding gcd of two integers (the Euclidean Algorithm)

1. Given $a, b \in \mathbb{Z}^{+}(a>b)$.
2. If $b \mid a$, then $\operatorname{gcd}(a, b)=b$, and $S T O P$.
3. If $b \not \backslash a$, then use the Division Algorithm to find $q, r \in \mathbb{Z}$ such that $a=b q+r$, where $0 \leq r<b$. Note that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
4. Repeat from step 2, replacing a by b and b by r.

EXAMPLE 11. Find $\operatorname{gcd}(1176,3087)$.

EXAMPLE 12. Find integers x and y such that $147=1176 x+3087 y$.

DEFINITION 13. Let $a, b \in \mathbb{Z}$. The integer n is a linear combination of a and b if there exist integers x and y such that $n=a x+b y$.

COROLLARY 14. If $d=\operatorname{gcd}(a, b)$ then there exist integers x and y such that $a x+b y=d$, i.e. d is a linear combination of a and b.

6.3 Relatively prime (coprime) integers and the Fundamental Theorem of Arithmetic

DEFINITION 15. Two integers a and b, not both zero, are said to be relatively prime (or coprime), if $\operatorname{gcd}(a, b)=1$.

For example,

THEOREM 16. a and b are relatively prime integers if and only if there exist integers x and y such that $a x+b y=1$.

Proof.

THEOREM 17. (Euclid's Lemma) Let $a, b, c \in \mathbb{Z}$. Suppose $a \mid b c$ and $\operatorname{gcd}(a, b)=1$. Then $a \mid c$.

DEFINITION 18. An integer p greater than 1 is called a prime number if the only divisors of p are ± 1 and $\pm p$. If an integer greater than 1 is not prime, it is called composite.

-7	-4	0	1	2	4	7	10209

Note that if p is prime, then for every $a \in \mathbb{Z}$, we have

$$
\operatorname{gcd} p, a=\left\{\begin{array}{cll}
p, & \text { if } & p \mid a \\
1, & \text { if } & p \nmid a
\end{array}\right.
$$

LEMMA 19. Let a and b be integers. If p is prime and divides $a b$, then p divides either a, or b. (Note, p also may divide both a and b.)

Proof.

COROLLARY 20. Let $a_{1}, a_{2}, \ldots, a_{m}$ be integers.If p is prime and divides $a_{1} a_{2} \ldots \ldots a_{m}$, then p divides at least one integer from $a_{1}, a_{2}, \ldots, a_{m}$.(In other words, there exists $i \in \mathbb{Z}, 1 \leq i \leq m$, such that $p \mid a_{i}$.)

Note that Lemma 19 corresponds to $n=2$. General proof of the above Corollary is by induction.

COROLLARY 21. Let $a \in \mathbb{Z}$ and p be a prime number. If $p \mid a^{n}$ for some $n \in \mathbb{Z}^{+}$, then $p \mid a$.

COROLLARY 22. Let $a \in \mathbb{Z}$. For every $n \in \mathbb{Z}^{+}$, if $a^{n} \in \mathbb{E}$, then $a \in \mathbb{E}$.

COROLLARY 23. Let $p, q_{1}, q_{2}, \ldots, q_{m}$ be prime with $p \mid q_{1} q_{2} \cdots q_{m}$. Then there exists $i \in \mathbb{Z}, 1 \leq i \leq m$, such that $p=q_{i}$.

Prime Factorization of a positive integer n greater than 1 is a decomposition of n into a product of primes.

Standard Form $n=p_{1} p_{2} \cdots p_{k}$, where primes $p_{1}, p_{2}, \ldots, p_{k}$ satisfy $p_{1} \leq p_{2} \leq \ldots \leq p_{k}$
Compact Standard Form $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{m}^{\alpha_{m}}$, where primes $p_{1}, p_{2}, \ldots, p_{m}$ satisfy $p_{1}<p_{2}<\ldots<p_{m}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathbb{Z}$.

EXAMPLE 24. Write 1224 and 225 in a standard form (i.e. find prime factorization).

THEOREM 25. (Second Principle of Mathematical Induction) Let $P(n)$ be a statement about the positive integer n. Suppose that $P(1)$ is true. Whenever k is a positive integer for which $P(i)$ is true for every positive integer i such that $i \leq k$, then $P(k+1)$ is true. Then $P(n)$ is true for every positive integer n.

Strategy

The proof by the Second Principle of Mathematical Induction consists of the following steps:
Basic Step: Verify that $P(1)$ is true.
Induction hypothesis: Assume that k is a positive integer for which $P(1), P(2), \ldots, P(k)$ are true .
Inductive Step: With the assumption made, prove that $P(k+1)$ is true.
Conclusion: $P(n)$ is true for every positive integer n.
THEOREM 26. Fundamental Theorem of Arithmetic. Let $n \in \mathbb{Z}, n>1$. Then n is a prime number or can be written as a product of prime numbers. Moreover, the product is unique, except for the order in which the factors appears.

Proof.
Existence: Use the Second Principle of Mathematical Induction.
$P(n)$:
Basic step:

Induction hypothesis:

Inductive step:

Uniqueness Use the Second Principle of Mathematical Induction.
$P(n)$:

Basic step:

Induction hypothesis:

COROLLARY 27. There are infinitely many prime numbers.
Proof.

EXAMPLE 28. Prove that if a is a positive integer of the form $4 n+3$, then at least one prime divisor of a is of the form $4 n+3$.

Proof

EXAMPLE 29. Prove that $\sqrt[n]{5}$ is irrational for every integer $n \geq 2$.

EXAMPLE 30. Prove that 2 is the only prime of the form $n^{3}+1$.

EXAMPLE 31. Suppose that $(a, c)=(b, c)=1$. Prove that $\operatorname{gcd}(a b, c)=1$.

EXAMPLE 32. Prove that for every integer $n, \operatorname{gcd}(n, n+1)=1$.

