11.5: Quadric surfaces

REVIEW: Parabola, hyperbola and ellipse.

- Parabola:
$y=a x^{2}$
or
$x=a y^{2}$.

- Ellipse: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Intercepts: $(\pm a, 0) \&(0, \pm b)$

- Hyperbola: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
or

Intercepts: $(\pm a, 0)$

Intercepts: $(0, \pm b)$

The most general second-degree equation in three variables x, y and z :

$$
\begin{equation*}
A x^{2}+B y^{2}+C z^{2}+a x y+b x z+c y z+d_{1} x+d_{2} y+d_{3} z+E=0 \tag{1}
\end{equation*}
$$

where $A, B, C, a, b, c, d_{1}, d_{2}, d_{3}, E$ are constants. The graph of (1) is a quadric surface.
Note if $A=B=C=a=b=c=0$ then (1) is a linear equation and its graph is a plane (this is the case of degenerated quadric surface).

By translations and rotations (1) can be brought into one of the two standard forms:

$$
A x^{2}+B y^{2}+C z^{2}+J=0 \quad \text { or } \quad A x^{2}+B y^{2}+I z=0 .
$$

In order to sketch the graph of a surface determine the curves of intersection of the surface with planes parallel to the coordinate planes. The obtained in this way curves are called traces or cross-sections of the surface.

Quadric surfaces can be classified into 5 categories:
ellipsoids, hyperboloids, cones, paraboloids, quadric cylinders. (shown in the table, see Appendix.)
The elements which characterize each of these categories:

1. Standard equation.
2. Traces (horizontal (by planes $z=k$), $y z$-traces (by $x=0$) and $x z$-traces (by $y=0$).
3. Intercepts (in some cases).

To find the equation of a trace substitute the equation of the plane into the equation of the surface (cf. Example 4, Section 1.1 notes). Note, in the examples
below the constants a, b, and c are assumed to be positive.

TECHNIQUES FOR GRAPHING QUADRIC SURFACES

- Ellipsoid. Standard equation:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Note if $a=b=c$ we have a \qquad .
EXAMPLE 1. Sketch the ellipsoid

$$
\frac{x^{2}}{9}+\frac{y^{2}}{16}+\frac{z^{2}}{25}=1
$$

Solution

- Find intercepts:
* x-intercepts: if $y=z=0$ then $x=$
* y-intercepts: if $x=z=0$ then $y=$
* z-intercepts: if $x=y=0$ then $z=$
- Obtain traces of:
* the $x y$-plane: plug in $z=0$ and get $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
* the $y z$-plane: plug in $x=0$ and get
* the $x z$-plane: plug in $y=0$ and get

- Hyperboloids: There are two types:
- Hyperboloid of one sheet.

Standard equation:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

EXAMPLE 2. Sketch the hyperboloid of one sheet

$$
x^{2}+y^{2}-\frac{z^{2}}{9}=1
$$

Plane	Trace
$z=0$	
$z= \pm 3$	
$x=0$	
$y=0$	

- Hyperboloid of two sheets.

Standard equation:

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

EXAMPLE 3. Sketch the hyperboloid of two sheet

$$
-x^{2}-\frac{y^{2}}{9}+z^{2}=1
$$

Solution Find z-intercepts: if $x=y=0$ then $z=$

Plane	Trace
$z= \pm 2$	
$x=0$	
$y=0$	

- Elliptic Cones. Standard equation:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}
$$

If $a=b=c$ then we say that we have a circular cone.
EXAMPLE 4. Sketch the elliptic cone

$$
z^{2}=x^{2}+\frac{y^{2}}{9}
$$

Plane	Trace
$z= \pm 1$	
$x=0$	
$y=0$	

Special cases:

1. $a=b=c$
2. $z=\sqrt{x^{2}+y^{2}}$
3. $z=-\sqrt{x^{2}+y^{2}}$

- Paraboloids There are two types:
- Elliptic paraboloid. Standard equation:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$

EXAMPLE 5. Sketch the elliptic paraboloid

$$
z=\frac{x^{2}}{4}+\frac{y^{2}}{9}
$$

Plane	Trace
$z=1$	
$x=0$	
$y=0$	

Special case: $a=b$

- Hyperbolic paraboloid. Standard equation:

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$

If $z=k$ then $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{k}{c}$
EXAMPLE 6. Sketch the hyperbolic paraboloid

$$
z^{2}=x^{2}-y^{2}
$$

Plane	Trace
$z=1$	
$z=-1$	
$x=0$	
$y=0$	

- Quadric cylinders: There are three types:

Elliptic cylinder:	Hyperbolic cylinder:	Parabolic cylinder:
- Standard equation:	- Standard equation:	- Standard equation:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

EXAMPLE 7.
Sketch elliptic cylinder

$$
x^{2}+\frac{y^{2}}{4}=1
$$

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
y=a x^{2}
$$

EXAMPLE 9. Sketch parabolic cylinder

$$
y=-x^{2}
$$

$$
x^{2}-y^{2}=1
$$

EXAMPLE 8 . Sketch hyperbolic cylinder

CONCLUSION

Ellipsoid	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
Hyperboloid of one sheet	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
Hyperboloid of two sheets	$-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
Elliptic Cones	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}$
Elliptic paraboloid	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}$
Hyperbolic paraboloid	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{z}{c}$
Elliptic cylinder	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Hyperbolic cylinder	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Parabolic cylinder	$y=a x^{2}$

TRANSLATIONS AND REFLECTIONS OF QUADRIC SURFACES

EXAMPLE 10. Describe and sketch the surface $z=(x+4)^{2}+(y-2)^{2}+5$.

Note that replacing a variable by its negative in the equation of a surface causes that surface to be reflected about a coordinate plane.

EXAMPLE 11. Identify and sketch the surface.
(a) $z=-\left(x^{2}+y^{2}\right)$

(b) $y^{2}=x^{2}+z^{2}$

EXAMPLE 12. Classify and sketch the surface

$$
x^{2}+y^{2}+z-4 x-6 y+13=0
$$

