12.3: Partial Derivatives

DEFINITION 1. If f is a function of two variables, its partial derivatives are the functions f_{x} and f_{y} defined by

$$
\begin{aligned}
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

Conclusion: $f_{x}(x, y)$ represents the rate of change of the function $f(x, y)$ as we change x and hold y fixed while $f_{y}(x, y)$ represents the rate of change of $f(x, y)$ as we change y and hold x fixed. Notations for partial derivatives: If $z=f(x, y)$, we write

$$
\begin{aligned}
& \quad f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\frac{\partial z}{\partial x}=f_{1}=D_{1} f=D_{x} f \\
& f_{y}(x, y)=f_{y}=
\end{aligned}
$$

RULE FOR FINDING PARTIAL DERIVATIVES OF $z=f(x, y)$:

1. To find f_{x}, regard y as a constant and differentiate $f(x, y)$ with respect to x.
2. To find f_{y}, regard x as a constant and differentiate $f(x, y)$ with respect to y.

EXAMPLE 2. If $f(x, y)=x^{3}+y^{5} e^{x}$ find $f_{x}(0,1)$ and $f_{y}(0,1)$.

EXAMPLE 3. Find all of the first order partial derivatives for the following functions:
(a) $z(x, y)=x^{3} \sin (x y)$
(b) $u(x, y, z)=y e^{x y z}$

EXAMPLE 4. The temperature at a point (x, y) on a flat metal plate is given by

$$
T(x, y)=\frac{80}{1+x^{2}+y^{2}},
$$

where T is measured in ${ }^{\circ} \mathrm{C}$ and x, y in meters. Find the rate of change of temperature with respect to distance at the point $(1,2)$ in the y-direction.

Geometric interpretation of partial derivatives: Partial derivatives are the slopes of traces:

- $f_{x}(a, b)$ is the slope of the trace of the graph of $z=f(x, y)$ for the plane $y=b$ at the point (a, b).
- $f_{y}(a, b)$ is the slope of the trace of the
 graph of $z=f(x, y)$ for the plane $x=a$ at (a, b).

EXAMPLE 5. If $f(x, y)=\sqrt{4-x^{2}-4 y^{2}}$, find $f_{x}(1,0)$ and $f_{y}(1,0)$ and interpret these numbers as slopes. Illustrate with sketches.

Higher derivatives: Since both of the first order partial derivatives for $f(x, y)$ are also functions of x and y, so we can in turn differentiate each with respect to x or y. We use the following notation:

$$
\begin{aligned}
&\left(f_{x}\right)_{x}=f_{x x}=f_{11}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} z}{\partial x^{2}} \\
&\left(f_{x}\right)_{y}=f_{x y}=f_{12}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} z}{\partial y \partial x} \\
&\left(f_{y}\right)_{x}=f_{y x}=f_{21}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y} \\
&\left(f_{y}\right)_{y}=====
\end{aligned}
$$

EXAMPLE 6. Find the second partial derivatives of

$$
f(x, y)=y^{3}+5 y^{2} e^{4 x}-\cos \left(x^{2}\right) .
$$

Clairaut's Theorem. Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D then

$$
f_{x y}(a, b)=f_{y x}(a, b) .
$$

Partial derivative of order three or higher can also be defined. For instance,

$$
f_{y y x}=\left(f_{y y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial^{2} z}{\partial y^{2}}\right)=\frac{\partial^{3} z}{\partial x \partial y^{2}} .
$$

Using Clairaut's Theorem one can show that if the functions $f_{y y x}, f_{x y y}$ and $f_{y x y}$ are continuous then

EXAMPLE 7. Find the indicated derivative for

$$
f(x, y, z)=\cos (x y+z)
$$

(a) $f_{x y}$
(b) $f_{z x y}$

