## 12.3: Partial Derivatives

DEFINITION 1. If f is a function of two variables, its partial derivatives are the functions  $f_x$  and  $f_y$  defined by

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Conclusion:  $f_x(x, y)$  represents the rate of change of the function f(x, y) as we change x and hold y fixed while  $f_y(x, y)$  represents the rate of change of f(x, y) as we change y and hold x fixed. **Notations for partial derivatives:** If z = f(x, y), we write

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$
$$f_y(x,y) = f_y =$$

RULE FOR FINDING PARTIAL DERIVATIVES OF z = f(x, y):

- 1. To find  $f_x$ , regard y as a constant and differentiate f(x,y) with respect to x.
- 2. To find  $f_y$ , regard x as a constant and differentiate f(x,y) with respect to y.

EXAMPLE 2. If  $f(x,y) = x^3 + y^5 e^x$  find  $f_x(0,1)$  and  $f_y(0,1)$ .

EXAMPLE 3. Find all of the first order partial derivatives for the following functions:

(a) 
$$z(x,y) = x^3 \sin(xy)$$

**(b)** 
$$u(x, y, z) = ye^{xyz}$$

EXAMPLE 4. The temperature at a point (x,y) on a flat metal plate is given by

$$T(x,y) = \frac{80}{1 + x^2 + y^2},$$

where T is measured in  ${}^{\circ}$ C and x, y in meters. Find the rate of change of temperature with respect to distance at the point (1,2) in the y-direction.

Geometric interpretation of partial derivatives: Partial derivatives are the *slopes of traces*:

•  $f_x(a, b)$  is the slope of the trace of the graph of z = f(x, y) for the plane y = b at the point (a, b).



•  $f_y(a,b)$  is the slope of the trace of the graph of z = f(x,y) for the plane x = a at (a,b).

EXAMPLE 5. If  $f(x,y) = \sqrt{4 - x^2 - 4y^2}$ , find  $f_x(1,0)$  and  $f_y(1,0)$  and interpret these numbers as slopes. Illustrate with sketches.



**Higher derivatives:** Since both of the first order partial derivatives for f(x, y) are also functions of x and y, so we can in turn differentiate each with respect to x or y. We use the following notation:

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x}$$

$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 z}{\partial x \partial y}$$

$$(f_y)_y = = = = = = =$$

EXAMPLE 6. Find the second partial derivatives of

$$f(x,y) = y^3 + 5y^2e^{4x} - \cos(x^2).$$

Clairaut's Theorem. Suppose f is defined on a disk D that contains the point (a,b). If the functions  $f_{xy}$  and  $f_{yx}$  are both continuous on D then

$$f_{xy}(a,b) = f_{yx}(a,b).$$

Partial derivative of order three or higher can also be defined. For instance,

$$f_{yyx} = (f_{yy})_x = \frac{\partial}{\partial x} \left( \frac{\partial^2 z}{\partial y^2} \right) = \frac{\partial^3 z}{\partial x \partial y^2}.$$

Using Clairaut's Theorem one can show that if the functions  $f_{yyx}$ ,  $f_{xyy}$  and  $f_{yxy}$  are continuous then

EXAMPLE 7. Find the indicated derivative for

$$f(x, y, z) = \cos(xy + z).$$

(a) 
$$f_{xy}$$

(b) 
$$f_{zxy}$$