12.8: Lagrange Multipliers

PROBLEM: Maximize/minimize a general function $u=f(x, y, z)$ subject to a constraint (or side condition) of the form $g(x, y, z)=k$.

SOLUTION:

Note that the equation $g(x, y, z)=k$ represents a \qquad in \mathbb{R}^{3}. Denote this surface by S.

Suppose that f has an extreme value at a point $P\left(x_{0}, y_{0}, z_{0}\right)$ on S and let C be a curve with vector equation:

$$
C: \quad \mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle
$$

that lies on S and passes through P.
If t_{0} is the parameter value corresponding to the point P then

$$
r\left(t_{0}\right)=
$$

The values that f takes on the curve C :

Since f has an extreme value at $P\left(x_{0}, y_{0}, z_{0}\right)$, it follows that

METHOD OF LAGRANGE MULTIPLIERS: To Maximize/minimize a general function $u=f(x, y, z)$ subject to a constraint of the form $g(x, y, z)=k$ (assuming that these extreme values exist):

1. Find all values x, y, z and λ (a Lagrange multiplier) s.t.

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z)
$$

and

$$
g(x, y, z)=k
$$

2. Evaluate f at all points (x, y, z) that arise from the previous step. The largest of these values is the $\max f$; the smallest is the $\min f$.

Rewrite the system

$$
\begin{gathered}
\nabla f(x, y, z)=\lambda \nabla g(x, y, z) \\
g(x, y, z)=k
\end{gathered}
$$

in component form:.

Method of Lagrange Multipliers for function of two variables:

EXAMPLE 1. Use Lagrange multipliers to solve Example 10 from Section 12.7: Find the points on the surface $z^{2}=x y+1$ that are closest to the origin.

EXAMPLE 2. Use Lagrange multipliers tofind the maximum and minimum values of $f(x, y)=x^{2}+y^{2}$ subject to $x^{4}+y^{4}=1$.

