14.1: Vector Fields

A vector function

$$
\mathbf{r}=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

is an example of a function whose domain is a set of real numbers and whose range is a set of vectors in \mathbb{R}^{3} :

$$
\mathbf{r}(t): \mathbb{R} \rightarrow \mathbb{R}^{3}
$$

Consider a type of functions (vector fields) whose domain is \mathbb{R}^{2} (or \mathbb{R}^{3}) and whose range is a set of vectors in $\mathbb{R}^{2}\left(\right.$ or $\left.\mathbb{R}^{3}\right)$:

Vector field over \mathbb{R}^{2}.

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\langle P(x, y), Q(x, y)\rangle
$$

Vector field over \mathbb{R}^{3} :

$$
\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle
$$

EXAMPLE 1. Describe the vector field $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$ by sketching.

Function $u=f(x, y, z)$ is also called a scalar field. Its gradient is also called gradient vector field:

$$
\mathbf{F}(x, y, z)=\nabla f(x, y, z)=
$$

EXAMPLE 2. Find the gradient vector field of $f(x, y, z)=x y z$.

