14.8: STOKES' THEOREM

Stokes' Theorem can be regarded as a 3-dimensional version of Green's Theorem:

$$
\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A=\iint_{D} \operatorname{curl} \mathbf{F} \cdot \mathbf{k} \mathrm{~d} A .
$$

Let S be an oriented surface with unit normal vector $\hat{\mathbf{n}}$ and with the boundary curve C (which is a space curve).

The orientation on S induces the positive orientation of the boundary curve C : if you walk in the positive direction around C with your head pointing in the direction of $\hat{\mathbf{n}}$, then the surface will always be on your left.

The positively oriented boundary curve of an oriented surface S is often written as ∂S.
Stokes' Theorem: Let S be an oriented piece-wise-smooth surface that is bounded by a simple, closed, piecewise smooth boundary curve C with positive orientation. Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then

$$
\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}
$$

or

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \hat{\mathbf{n}} \mathrm{~d} S=\oint_{\partial S} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} .
$$

EXAMPLE 1. Find the work performed by the forced field $\mathbf{F}(x, y, z)=\left\langle 3 x^{8}, 4 x y^{3}, y^{2} x\right\rangle$ on a particle that traverses the curve C in the plane $z=y$ consisting of 4 line segments from $(0,0,0)$ to $(1,0,0)$, from $(1,0,0)$ to $(1,3,3)$, from $(1,3,3)$ to $(0,3,3)$, and from $(0,3,3)$ to $(0,0,0)$.

EXAMPLE 2. Verify Stokes' Theorem $\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S}=\int_{\partial S} \vec{F} \cdot \mathrm{~d} \vec{r}$ for the vector field $\vec{F}=$ $\langle 3 y, 4 z,-6 x\rangle$ and the paraboloid $z=9-x^{2}-y^{2}$ that lies above the plane $z=-7$ and oriented upward. Be sure to check and explain the orientations.

Solution: Use the following steps:

- Parametrize the boundary circle ∂S and compute the line integral.
-Parametrize the surface of the paraboloid and compute the surface integral:

THEOREM 3. If \mathbf{F} is a vector field defined on \mathbb{R}^{3} whose component functions have continuous partial derivatives and curl $\mathbf{F}=\mathbf{0}$, then \mathbf{F} is a conservative vector field.

SUMMARY: Let $\mathbf{F}(x, y, z)=P(x, y, z) \mathbf{i}+Q(x, y, z) \mathbf{j}+R(x, y, z) \mathbf{k}$ be a continuous vector field in \mathbb{R}^{3}.

There exists f s.t.
$\nabla f=\mathbf{F}$

$$
\int_{A \breve{B}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} \text { is independent of path }
$$

\mathbf{F} is conservative
in \mathbb{R}^{3}

$\operatorname{curl} \mathbf{F}=\mathbf{0}$

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0 \text { for every closed curve } C
$$

