14.9: The Divergence Theorem

Let E be a simple solid region with the boundary surface S (which is a closed surface.) Let S be positively oriented (i.e.the orientation on S is outward that is, the unit normal vector $\hat{\mathbf{n}}$ is directed outward from E).

The Divergence Theorem: Let E be a simple solid region whose boundary surface S has positive (outward) orientation. Let \mathbf{F} be a continuous vector field on an open region that contains E. Then

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} \mathrm{~d} V
$$

EXAMPLE 1. Let $E=\left\{(x, y, z): x^{2}+y^{2} \leq R^{2}, 0 \leq z \leq H\right\}$. Find the flux of the vector field $\mathbf{F}=\langle 1+x, 3+y, z-10\rangle$ over ∂E.

REMARK 2. If $\mathbf{F}=\left\langle\frac{x}{3}, \frac{y}{3}, \frac{z}{3}\right\rangle$ then

EXAMPLE 3. Let E be the solid bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane. Evaluate $I=\iint_{S}\left\langle x^{3}, 2 x z^{2}, 3 y^{2} z\right\rangle \cdot \mathrm{d} \mathbf{S}$ if
(a) S is the boundary of the solid E.
(B) S is the part of the paraboloid $z=4-x^{2}-y^{2}$ between the planes $z=0$ and $z=4$.

EXAMPLE 4. Evaluate $I=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$ if S is the boundary of
(a) ellipsoid $E=\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1\right\}$ and $\mathbf{F}=$
(b) an arbitrary simple solid region E and F is an arbitrary continuous vector field.

