Due Thursday 03/20/14 at the beginning of class.
STAPLE YOUR WORK QUIZ 7 (Take-home) MATH 221
LAST NAME \qquad FIRST NAME \qquad
On my honor, as an Aggie, I certify that the solution submitted by me is my own work. I had neither given nor received unauthorized aid on this work.

Signature: \qquad

1. [20pts] Given

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{2(1-y)} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

(a) Sketch the region of integration D.

(b) Reverse the order of integration. WRITE YOUR ANSWER HERE:
\square
2. [20pts] Given

$$
\int_{0}^{2} \int_{-\sqrt{1-(y-1)^{2}}}^{(2-y) / 2} f(x, y) \mathrm{d} x \mathrm{~d} y .
$$

(a) Sketch the region of integration D.

(b) Reverse the order of integration. WRITE YOUR ANSWER HERE:
\square
3. [20pts] Evaluate the integral by reversing the order of integration:

$$
\int_{0}^{3} \int_{y^{2}}^{9} y \cos \left(x^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

4. [20pts] Find the volume of the solid that lies under the surface $z=3 x y$ and above the region D in the $x y$-plane bounded by the parabolas $y=x^{2}$ and $x=y^{2}$.

Sketch D here:

5. [20pts] A lamina occupies the region $D=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4, x \geq 0\right\}$. The density of the lamina at any point is equal to its distance from the origin.
(a) Find the mass of the lamina.

Sketch D here:

(b) Find the center of mass of the lamina.

