QUIZ 10 MATH 221

LAST NAME \qquad FIRST NAME

On my honor, as an Aggie, I certify that the solution submitted by me is my own work. I had neither given nor received unauthorized aid on this work.

Signature: \qquad

Due Thursday 04/10 at the beginning of class.

- If turned in later than 10 minutes into class, 10 points off. No papers will be accepted after class.
- If you turn it in to my office (Blocker 245 E) make sure you do it before $3: 00 \mathrm{pm}, 04 / 10$.
- YOUR WORK MUST BE NEAT, EASY TO FOLLOW.
- You may use notes and textbook, but not the help of anything else.

1. Determine if the vector field $\mathbf{F}(x, y)=\left\langle 12 x y+28 x^{3} y^{7}+2013,49 x^{4} y^{6}+6 x^{2}-24 y^{2}\right\rangle$ is conservative or not. If it is conservative, find its potential.
2. Evaluate $\int_{C} \nabla f \cdot \mathrm{~d} \mathbf{r}$ for $f(x, y, z)=x y z^{2}$ and C is given by $\mathbf{r}(t)=\left\langle t, t^{2}+1, t+2\right\rangle, 1 \leq t \leq 2$.
3. Find the potential function for the vector field

$$
\mathbf{F}(x, y, z)=\left\langle 2 x \ln \left(y^{2} z\right), \frac{2 x^{2}}{y}-27 y^{2} z^{4}, \frac{x^{2}}{z}-36 y^{3} z^{3}\right\rangle
$$

4. Consider the line integral $\int_{C}\langle 3-8 y, 4 x+y\rangle \cdot \mathrm{d} \mathbf{r}$, where C is the positively oriented circle of radius 1 centered at the origin. Evaluate the integral
(a) directly;
(b) using Green's theorem.
