12.4: Tangent Planes and Differentials

Suppose that $f(x, y)$ has continuous first partial derivatives and a surface S has equation $z=$ $f(x, y)$. Let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S, i.e. $z_{0}=f\left(x_{0}, y_{0}\right)$.

Denote by C_{1} the trace to $f(x, y)$ for the plane $y=y_{0}$ and denote by C_{2} the trace to $f(x, y)$ for the plane $x=x_{0}$. let L_{1} be the tangent line to the trace C_{1} and let L_{2} be the tangent line to the trace C_{2}.

The tangent plane to the surface S (or to the graph of $f(x, y)$) at the point P is defined to be the plane that contains both the tangent lines L_{1} and L_{2}.

THEOREM 1. An equation of the tangent plane to the graph of the function $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is

$$
z-f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

CONCLUSION:A normal vector to the tangent plane to the surface $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is

$$
\mathbf{n}=\mathbf{n}\left(x_{0}, y_{0}\right)=\langle\quad, \quad, \quad\rangle
$$

The line through the point $P\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ parallel to the vector \mathbf{n} is perpendicular to the above tangent plane. This line is called the normal line to the surface $z=f(x, y)$ at P. It follows that this normal line can be expressed parametrically as

EXAMPLE 2. Find an equation of the tangent plane to the graph of the function $z=x^{2}+y^{2}+8$ at the point $(1,1)$.

EXAMPLE 3. Find parametric equations for the normal line to the surface $z=e^{4 y} \sin (4 x)$ at the point $P(\pi / 8,0,1)$

Differentials. Given $z=f(x, y)$. If Δx and Δy are given increments of $x=a$ and $y=b$ respectively, then the corresponding increment of z is

$$
\begin{equation*}
\Delta z(a, b)=f(a+\Delta x, b+\Delta y)-f(a, b) \tag{1}
\end{equation*}
$$

[^0]The differentials $\mathrm{d} x$ and $\mathrm{d} y$ are independent variables. The differential $\mathrm{d} z$ (or the total differential) is defined by

$$
\mathrm{d} z=\frac{\partial z}{\partial x} \mathrm{~d} x+\frac{\partial z}{\partial y} \mathrm{~d} y
$$

FACT: $\Delta z \approx \mathrm{~d} z$.
This implies:

$$
f(a+\Delta x, b+\Delta y) \approx f(a, b)+\mathrm{d} z(a, b)
$$

or

EXAMPLE 4. Use differentials to find an approximate value for $\sqrt{1.03^{2}+1.98^{3}}$.

If $u=f(x, y, z)$ then the differential $\mathrm{d} u$ at the point $(x, y, z)=(a, b, c)$ is defined in terms of the differentials $\mathrm{d} x, \mathrm{~d} y$ and $\mathrm{d} z$ of the independent variables:

$$
\mathrm{d} u(a, b, c)=f_{x}(a, b, c) \mathrm{d} x+f_{y}(a, b, c) \mathrm{d} y+f_{z}(a, b, c) \mathrm{d} z
$$

EXAMPLE 5. The dimensions of a closed rectangular box are measured as $80 \mathrm{~cm}, 60 \mathrm{~cm}$ and 50 cm , respectively, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.

A function $f(x, y)$ is differentiable at (a, b) if its partial derivatives f_{x} and f_{y} exist and are continuous at (a, b).

For example, all polynomial and rational functions are differentiable on their natural domains.
Let a surface S be a graph of a differentiable function f. As we zoom in toward a point on the surface S, the surface looks more and more like a plane (its tangent plane) and we can approximate the function f by a linear function of two variables.

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)=: L(x, y)
$$

[^0]: ${ }^{1}$ the pictures are from our textbook

