12.7: Maximum and minimum values

Function $y=f(x)$
DEFINITION 1. A function $f(x)$ has a local maximum at $x=a$ if $f(a) \geq f(x)$ when x is near a (i.e. in a neighborhood of a). A function f has a local minimum at $x=a$ if $f(a) \leq f(x)$ when x is near a.

If the inequalities in this definition hold for ALL points x in the domain of f, then f has an absolute max (or absolute min) at a

If the graph of f has a tangent line at a local extremum, then the tangent line is horizontal: $f^{\prime}(a)=0$.

Function of two variables $z=f(x, y)$

DEFINITION 2. A function $f(x, y)$ has a local maximum at $(x, y)=(a, b)$ if $f(a, b) \geq f(x, y)$ when (x, y) is near (a, b) (i.e. in a neighborhood of $(a, b))$. A function f has a local minimum at $(x, y)=(a, b)$ if $f(a, b) \leq f(x, y)$ when (x, y) is near (a, b).

If the inequalities in this definition hold for ALL points (x, y) in the domain of f, then f has an absolute maximum (or absolute minimum) at (a, b).

If the graph of f has a tangent plane at a local extremum, then the tangent PLANE is horizontal.

THEOREM 3. If f has a local extremum (that is, a local maximum or minimum) at (a, b) and the first-order partial derivatives exist there, then

$$
f_{x}(a, b)=f_{y}(a, b)=0 \quad(\text { or, equivalently, } \nabla f(a, b)=0 .)
$$

DEFINITION 4. A point (a, b) such that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, or one of this partial derivatives does not exist, is called a critical point of f.

At a critical point, a function could have a local max or a local min, or neither.
We will be concerned with two important questions:

- Are there any local or absolute extrema?
- If so, where are they located?

SETS in \mathbb{R}^{2}

in \mathbb{R}	in \mathbb{R}^{2}
close interval $[a, b]$	close set
open interval (a, b)	open set
end points of an interval	boundary points

DEFINITION 5. A bounded set in \mathbb{R}^{2} is one that contained in some disk.

THE EXTREME VALUE THEOREM:

Function $y=f(x)$	Function of two variables $z=f(x, y)$
If f is continuous on a closed inter-	If f is continuous on a closed bounded set D in \mathbb{R}^{2}, then f
val $[a, b]$, then f attains an absolute	attains an absolute maximum value $f\left(x_{1}, y_{1}\right)$ and an absolute
maximum value $f\left(x_{1}\right)$ and an abso-	minimum value $f\left(x_{2}, y_{2}\right)$ at some points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
lute minimum value $f\left(x_{2}\right)$ at some	
points x_{1} and x_{2} in $[a, b]$.	in D.

EXAMPLE 6. Find extreme values of $f(x, y)=x^{2}+y^{2}$.

	Local	Absolute
Maximum		
Minimum		

Domain:

EXAMPLE 7. Find extreme values of $f(x, y)=\sqrt{1-x^{2}-y^{2}}$.

	Local	Absolute
Maximum		
Minimum		

Domain:

EXAMPLE 8. Find extreme values of $f(x, y)=y^{2}-x^{2}$.

	Local	Absolute
Maximum		
Minimum		

Domain:

REMARK 9. Example 8 illustrates so called saddle point of f. Note that the graph of f crosses its tangent plane at (a, b).

EXAMPLE 10. Find the points on the surface $z^{2}=x y+1$ that are closest to the origin.

ABSOLUTE MAXIMUM AND MINIMUM VALUES on a closed bounded set.

 THE EXTREME VALUE THEOREM:To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

1. Find the values of f at the critical points of f in (a, b).
2.Find the extreme values of f at the endpoints of the interval.
3.The largest of the values from steps $1 \& 2$ is the absolute max value; the smallest of the values from steps $1 \& 2$ is the absolute min value.

To find the absolute max and min values of a continuous function f on a closed bounded set D :

1. Find the values of f at the critical points of f in D.
2.Find the extreme values of f on the boundary of D.(This usually involves the Calculus I approach for this work.)
2. The largest of the values from steps $1 \& 2$ is the absolute maximum value; the smallest of the values from steps $1 \& 2$ is the absolute minimum value.

- The quantity to me maximized/minimized is expressed in terms of variables (as few as possible!)
- Any constraints that are presented in the problem are used to reduce the number of variables to the point they are independent,
- After computing partial derivatives and setting them equal to zero you get purely algebraic problem (but it may be hard.)
- Sort out extreme values to answer the original question.

EXAMPLE 11. A lamina occupies the region $D=\{(x, y): 0 \leq x \leq 3,-2 \leq y \leq 4-2 x\}$. The temperature at each point of the lamina is given by

$$
T(x, y)=4\left(x^{2}+x y+2 y^{2}-3 x+2 y\right)+10
$$

Find the hottest and coldest points of the lamina.

Second derivatives test:

Suppose $f^{\prime \prime}$ is continuous near a and $f^{\prime}(c)=0$ (i.e. a is a critical point).

- If $f^{\prime \prime}(c)>0$ then $f(c)$ is a local minimum.
- If $f^{\prime \prime}(c)<0$ then $f(c)$ is a local maximum.

Suppose that the second partial derivatives of f are continuous near (a, b) and $\nabla f(a, b)=\mathbf{0}$ (i.e. (a, b) is a critical point).
Let $\mathcal{D}=\mathcal{D}(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$ - If $\mathcal{D}>0$ and $f_{x x}(a, b)>0$ then $f(a, b)$ is a local minimum.

- If $\mathcal{D}>0$ and $f_{x x}(a, b)<0$ then $f(a, b)$ is a local maximum.
- If $\mathcal{D}<0$ then $f(a, b)$ is not a local extremum (saddle point).

NOTE:

- If $f^{\prime \prime}(c)=0$, then the test gives no information.

If $\mathcal{D}=0$ or does not exist, then the test gives no information. fails.

To remember formula for \mathcal{D} :

$$
\mathcal{D}=f_{x x} f_{y y}-\left[f_{x y}\right]^{2}=\left|\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|
$$

EXAMPLE 12. Use the Second Derivative Test to confirm that a local cold point of the lamina in the previous Example is $(2,-1)$.

EXAMPLE 13. Find the local extrema of $f(x, y)=x^{3}+y^{3}-3 x y$.
Solution: Find critical points:

Calculate the second partial derivatives and \mathcal{D}.

$f_{x x}=$		
$f_{x y}=$		
$f_{y y}=$		
\mathcal{D}		

EXAMPLE 14. The mountain is defined by $z=x y$ in the elliptical domain

$$
D=\left\{(x, y) \left\lvert\, \frac{x^{2}}{16}+y^{2} \leq 1\right.\right\}
$$

(a) Find the top of the mountain.
(b) Is the critical point found in the previous item the highest or the lowest in its neighborhood?

