4. Sets

4.1. The language of sets

- Set Terminology and Notation

Set is a well-defined collection of objects. Elements are objects or members of the set.

Describing a Set

- Roster notation:

$$
A=\{a, b, c, d, e\} \text { Read: Set } A \text { with elements } a, b, c, d, e .
$$

- Indicating a pattern:
$B=\{a, b, c, \ldots, z\}$ Read: Set B with elements being the letters of the alphabet.
If a is an element of a set A, we write $a \in A$ that read " a belongs to A." However, if a does not belong to A, we write $a \notin A$.

Set-builder notation (a more precise way of describing a set)

NOTATION 1. Let $P(x)$ be a predicate. Then the notation

$$
A=\{x \mid P(x)\} \quad \text { or } \quad A=\{x: P(x)\}
$$

denotes the set A of all elements x such that $P(x)$ is a true statement. In symbols,

$$
\forall x, x \in A \Leftrightarrow P(x)
$$

When D is a set containing the set A, the notation

$$
A=\{x \in D \mid P(x)\}=\{x \mid x \in D \quad \wedge \quad P(x)\}
$$

denotes the set A of all elements in D such that $P(x)$ is a true statement. In symbols,

$$
\forall x \in D, x \in A \Leftrightarrow P(x)
$$

EXAMPLE 2. Use set-builder notation to describe the following sets in two different ways.
a) O
b) 5 Z
c) N
d) Q
e) Set of all integers of the form $4 n+2$.
f) Set of all positive integers less than 2019.

EXAMPLE 3. For each of the following sets use symbols to fill in the blanks:

- $A=\{n \mid n \in \mathbb{E}$ and $|n|>12\}$

1. $x \in A \Leftrightarrow$ \qquad
2. $16 \in A$ because \qquad
3. $4 \notin A$ because \qquad
4. $7 \notin A$ because \qquad

- $B=\left\{x \in \mathbb{R} \mid x^{2}-4=0\right\}$

1. $x \in B \Leftrightarrow$ \qquad
2. $16 \notin B$ because \qquad
3. $2 \in B$ because \qquad

- $C=\{3 t+1 \mid t \in \mathbb{Z}\}$

1. $x \in C \Leftrightarrow$ \qquad
2. $16 \in C$ because \qquad
3. $5 \notin C$ because \qquad

Interval notation:

Intervals

NOTATION 4. - bounded intervals:

1. closed interval $[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$
2. open interval $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$
3. half-open,half-closed interval $(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\}$
4. half-closed,half-open interval $[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\}$

- unbounded intervals:

5. $[a, \infty)=\{x \in \mathbb{R} \mid a \leq x\}$
6. $(a, \infty)=\{x \in \mathbb{R} \mid a<x\}$
7. $(-\infty, a]=\{x \in \mathbb{R} \mid x \leq a\}$
8. $(-\infty, a)=\{x \in \mathbb{R} \mid x<a\}$
9. $(-\infty, \infty)=\mathbb{R}$

EXAMPLE 5. Represent the following sets in interval notation when it is possible.
a) $\{x \in \mathbf{R} \mid(x \geq 0) \wedge(x \in \mathbf{Z})\}=$
b) $\{x \in \mathbf{Z} \mid 3 \leq x<10\}=$
c) $\{x \in \mathbf{R} \mid-2019 \leq x \leq 2020\}=$

Subsets

- Two sets, A and B , are equal, written $A=B$, if and only if they have exactly the same elements. (NOTE: they do not have to be in the same order!).

For example,

$$
\{a, b, c\} \quad\{c, a, b\} \quad\{a, b, c, b\}
$$

Question: How to show that two sets are not equal?

- If every element in set A is also an element in set B, then A is a subset of B, written $A \subseteq B$.

Note that $A \subseteq A$. In symbols: $A \subseteq B \Leftrightarrow(\forall x \in U,(x \in A \quad x \in B))$

- If $A \subseteq B$, but $A \neq B$, then A is a proper subset of B, written $A \subset B$.

$$
A \subseteq B \Leftrightarrow(A \subset B \quad \vee \quad A=B)
$$

and

$$
A \subset B \Leftrightarrow(A \subseteq B \quad \wedge \quad A \neq B)
$$

- The empty set is the set that doesn't have any elements, denoted by \emptyset or $\}$.
- The universal set is the set that contains all of the elements for a problem, denoted by U.

EXAMPLE 6. Let $A=\{n \in \mathbf{Z} \mid n$ is even $\}$, $B=\left\{n \in \mathbf{Z} \mid n^{2}\right.$ is even $\}$, and $C=\left\{n^{2} \mid n\right.$ is even $\}$. Prove or disprove the following:
(a) $A=B$
(b) $B=C$
infinite sets $\mathbb{R}, \mathbb{Z}, \mathbb{Q},[1,3),\left\{2^{n} \mid n \in \mathbb{N}\right\}$
finite sets $\{\Delta, \square\},\left\{2^{n} \mid n \in\{3,4,5\}\right\}$
cardinality of a finite set $A,|A|$

$$
|\emptyset|=\quad, \quad\left|\left\{x \in \mathbb{R} \mid x^{4}=1\right\}\right|=
$$

EXAMPLE 7. Let A and B be two sets.
(a) TRUE/FALSE If $A=B$, then $|A|=|B|$.
(b) TRUE/FALSE If $|A|=|B|$, then $A=B$.

EXAMPLE 8. Let $A=\{n \in \mathbb{Z} \mid n=3 t-2$ for some $t \in \mathbb{Z}\}$ and $B=\{n \in \mathbb{Z} \mid n=3 t+1$ for some $t \in \mathbb{Z}\}$. Prove that $A=B$.

4.2 Operations on sets

VENN DIAGRAMS

- a visual representation of sets (the universal set U is represented by a rectangle, and subsets of U are represented by regions lying inside the rectangle).

EXAMPLE 9. Use Venn diagrams to illustrate the following statements:
(a) $A=B$
(b) $A \subseteq B \subseteq C$
(c) A and B are not subsets of each other.

DEFINITION 10. Let A and B be sets in a universal set U. The union of A and B, written $A \cup B$, is the set of all elements that belong to either A or B or both. Symbolically:

$$
A \cup B=\{x \in U \mid x \in A \vee x \in B\} .
$$

DEFINITION 11. Let A and B be sets in a universal set U. The intersection of A and B, written $A \cap B$, is the set of all elements in common with A and B. Symbolically:

$$
A \cap B=\{x \in U \mid x \in A \wedge x \in B\} .
$$

DEFINITION 12. Let A and B be sets. The complement of A in B denoted $B-A$, is

$$
B-A=\{x \in U \mid x \in B \wedge x \notin A\}
$$

\square
REMARK 13. For convenience, if U is a universal set and A is a subset in U, we will write $U-A=\bar{A}$, called simply the complement of A.

EXAMPLE 14. Let $U=\{0,1,2, \ldots, 9,10\}$ be a universal set, $A=\{0,2,4,6,8,10\}$, and $B=\{1,3,5,7,9\}$. Find the following sets:
(a) $\bar{A} \cup \bar{B}$
(b) $(\overline{A \cap B}) \cap(\overline{A \cup B})$

set notation	$=$	\subset, \subseteq	\cup	\cap	\square	\emptyset	U
logical symbol							

Power set

DEFINITION 15. Let A be a set. The power set of A, written $P(A)$, is the following set

$$
P(A)=\{X \mid X \subseteq A\}
$$

In other words, $P(A)$ is the set of all subsets of A (including \emptyset and A).
EXAMPLE 16. Find $P(\{x, y\})$ and fill in the blanks.
$P(\{x, y\})=$
(a) $\{x\} _\{x, y\}$
(b) $\{x\} \ldots P(\{x, y\})$
(c) $\{\{x\}\} _P(\{x, y\})$
(d) $\emptyset_{_}\{x, y\}$
(e) $\emptyset _\quad P(\{x, y\})$
$(\mathbf{f}) \emptyset _P(\{x, y\})$
(g) $\{\emptyset\} \ldots P(\{x, y\})$

EXAMPLE 17. Let $A=\{-1,0,1\}$.

1. Find all elements of power set of A.
2. Find $|P(A)|$ (the number of subsets of A) and $|P(P(A))|$ (the number of subsets of $P(A)$).
3. Write 3 subsets of A and 5 subsets of $P(A)$.
4. What are $|P(A)|$ and $|P(P(A))|$ for an arbitrary set A ?

EXAMPLE 18. Find
(a) $P(\{\Delta\})$
(b) $P(\emptyset)$
(c) $P(P(\emptyset))$
(d) $P(\{\Delta, \square\})$
(e) $P(\{\emptyset,\{\emptyset\}\})$

Cartesian Product

DEFINITION 19. Let A and B be sets. The Cartesian product of A and B, written $A \times B$, is the following set:

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Informally, $A \times B$ is the set of ordered pairs of objects.
EXAMPLE 20. Given $A=\{0,1\}$ and $B=\{4,5,6\}$.
(a) Does the pair $(6,1)$ belong to $A \times B$?
(b) List the elements of $A \times B$.
(c) What is the cardinality of $A \times B$?
(d) List the elements of $A \times A \times A$ and $(A \times A) \times A$.
(e) Does the triple $(1,6,4)$ belong to $A \times B \times B$?
(f) Describe the following sets $R \times R, R \times R \times R$.

Proofs Involving Sets

Proving set properties

Use the following tautologies:

- $x \in A \cap B \Leftrightarrow(x \in A \wedge x \in B)$
- $x \in A \cup B \Leftrightarrow(x \in A \vee x \in B)$
- $x \in \bar{A} \Leftrightarrow x \notin A$
- $x \in A-B \Leftrightarrow(x \in A \wedge x \notin B)$
- $A=B \Leftrightarrow(x \in A \Leftrightarrow x \in B)$
- $A \subseteq B \Leftrightarrow(x \in A \Rightarrow x \in B)$
- $(x, y) \in A \times B \Leftrightarrow(x \in A \wedge y \in B)$

Methods:

- To prove $A \subseteq B$ it is sufficient to prove $x \in A \Rightarrow x \in B$.
- To prove $A=B$ it is sufficient to prove $x \in A \Leftrightarrow x \in B$.
- To prove $A=B$ it is sufficient to prove $A \subseteq B$ and $B \subseteq A$.
- To show that $A=\emptyset$ it is sufficient to show that $x \in A$ implies a false statement.

Fundamental properties of sets

THEOREM 21. The following statements are true for all sets A, B, and C.

1. $A \cup B=B \cup A$ (commutative)
2. $A \cap B=B \cap A$ (commutative)
3. $(A \cup B) \cup C=A \cup(B \cup C)$ (associative)
4. $(A \cap B) \cap C=A \cap(B \cap C)$ (associative)
5. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ (distributive)
6. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ (distributive)

DeMorgan's Laws: If A and B are the sets contained in some universal set U then
7. $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
8. $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

THEOREM 22. Let A and B be a subsets of a universal set U. Then

1. $\overline{\bar{A}}=A$.
2. $\bar{\emptyset}=U$.
3. $\bar{U}=\emptyset$
4. $A \subseteq A \cup B$.
5. $A \cap B \subseteq A$.
6. The empty set is a subset of every set. (Namely, for every set $A, \emptyset \subseteq A$. If $A \neq \emptyset$, then $\emptyset \subset A$.).
7. $A \cup \emptyset=A$.
8. $A \cap \emptyset=\emptyset$.
9. $A \cap A=A \cup A=A$

EXAMPLE 23. Let A and B be subsets of a universal set U. Show that $(A-B) \cap B=\emptyset$.

PROPOSITION 24. Let A and B be subsets of a universal set U. Then

$$
A-B=A \cap \bar{B}
$$

EXAMPLE 25. Let A, B and C be sets. Prove that

$$
A-(B \cup C)=(A-B) \cap(A-C)
$$

EXAMPLE 26. For the sets A, B and C prove that

$$
A \times(B \cup C)=(A \times B) \cup(A \times C)
$$

PROPOSITION 27. Let A, B, and C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Then $A \subseteq C$.

EXAMPLE 28. Let A, B, C and D be sets. If $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

EXAMPLE 29. Prove the following statement. Let A and B be subsets of a universal set U. Then $A \subseteq B \Leftrightarrow A \cup B=B$.

EXAMPLE 30. Let A and B be subsets of a universal set U. Prove that

$$
A=A-B \Leftrightarrow A \cap B=\emptyset
$$

4.3 Arbitrary unions and intersections

DEFINITION 31. Let I be a set. An indexed collection of sets $\left\{A_{\alpha}\right\}_{\alpha \in I}$ represents a collection of sets such that for every $\alpha \in I$, there is a corresponding set A_{α}. In this case we call I the indexed set.

Collection of sets	Indexed set	Shortened notation
$A_{0}, A_{1}, A_{2}, A_{3}, \ldots, A_{2016}$		
$B_{3}, B_{6}, B_{9}, B_{77}$		
$C_{5}, C_{10}, C_{15}, \ldots, C_{2015}$		

- Union and Intersection

EXAMPLE 32. Complete the following
(a) $x \in \bigcup_{\alpha \in I} A_{\alpha} \Leftrightarrow \exists \alpha \in I \ni x \in A_{\alpha}$
$x \notin \bigcup_{\alpha \in I} A_{\alpha} \Leftrightarrow$
(b) $x \in \bigcap_{\alpha \in I} A_{\alpha} \Leftrightarrow \forall \alpha \in I, x \in A_{\alpha}$

$$
x \notin \bigcap_{\alpha \in I} A_{\alpha} \Leftrightarrow
$$

EXAMPLE 33. Given $B_{i}=\{i, i+1\}$ for $i=1,2, \ldots, 10$. Determine the following
(a) $\bigcap_{i=1}^{10} B_{i}$
(b) $B_{i} \cap B_{i+1}$
(c) $\bigcap_{i=k}^{k+1} B_{i}$ where $1 \leq k<10$.
(d) $\bigcup_{i=j}^{k} B_{i}$ where $1 \leq j<k \leq 10$.

EXAMPLE 34. $A_{n}=\left\{x \in \mathbf{R} \left\lvert\,-\frac{1}{n} \leq x \leq \frac{1}{n}\right.\right\}, \quad n \in \mathbf{Z}^{+}$. Find $\bigcup_{n \in \mathbf{Z}^{+}} A_{n}$ and $\bigcap_{n \in \mathbf{Z}^{+}} A_{n}$.

