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1.1 Language and Logic

Mathematical Statements

DEFINITION 1. A proposition is any declarative sentence (i.e. it has both a subject and a verb) that
is either true or false, but not both.

A proposition cannot be neither true nor false and it cannot be both true and false.
A proposition is an example of mathematical statement. Sometimes it is called a statement.

EXAMPLE 2. Determine whether the following sentences are propositions.

1. YES / NO The integer 5 is odd.

2. YES / NO The integer 24277151704311 is prime.

3. YES / NO 20 + 19 = 2019

4. YES / NO Substitute the number 7 for x.

5. YES / NO What is the derivative of cosx?

6. YES / NO Apple manufactures computers.

7. YES / NO The 2019th digit of π is 5.

8. YES / NO Vanilla is better than chocolate.

9. YES / NO I am telling a lie.

SET Terminology and Notation (very short introduction1)
Set is a well-defined collection of objects.
Elements are objects or members of the set.

• Roster notation:

A = {a, b, c, d, e} Read: Set A with elements a, b, c, d, e.

• Indicating a pattern:

B = {a, b, c, ..., z} Read: Set B with elements being the letters of the alphabet.

If a is an element of a set A, we write a ∈ A that read ”a belongs to A.” However, if a does not belong
to A, we write a 6∈ A.

Some Number sets:

• R is the set of all real numbers

• Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of all integers

• N = {1, 2, 3, . . .}, the set of all natural numbers

• Q is the set of all rational numbers

1We will study SETS in Chapter 4!
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• E is the set of all even integers

• O is the set of all odd integers

• nZ is the set of all integers multiples of n (n ∈ Z)

EXAMPLE 3. Determine whether the following sentences are propositions.

1. YES / NO |x| > 7

2. YES / NO The absolute value of the real number x is greater than 7.

3. YES / NO The absolute value of a real number x is greater than 7.

A predicate is any declarative sentence containing one or more variables, each variable representing
a value in some prescribing set, called the universe, and which becomes a proposition when values from
their respective universes are substituted for these variables.

A predicate is another example of mathematical statement. Sometimes it is also called an open sentence.

Emphasize that all variables in a predicate are free variables, i.e. variables that wee need to “substitute
for” in order to obtain a proposition.

EXAMPLE 4. (a) “ P (x) : x+ 5 = 7 where x ∈ R” is a predicate.

• P (2) is

• P (3), P (−1), P (5.6) are .

• P (x) becomes a true proposition when we substitute for x the values from the set .
For all other values of x, P (x) is a proposition.

(b) “P (n) : (n− 3)2 ≤ 1 where n ∈ Z” is a predicate.

• P (n) becomes a true proposition when we substitute for n the values from the set .
For all other values of n, P (n) is a proposition.

Basic Logical Connectivities

We have two types of mathematical statements: propositions and predicates. We can build more com-
plicated (compound) statements using the following logical connectivities:

∧, ∨, ¬, ⇒ .

Conjunction and Disjunction

Logical connectivity write read meaning

Conjunction P ∧Q P and Q Both P and Q are true

Disjunction P ∨Q P or Q P is true or Q is true

P : Ben is a student.
Q: Ben is a grader.
P ∧Q: Ben is a student a grader.
P ∨Q: Ben is a student a grader.
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TRUTH TABLES

P Q P ∧Q Q ∧ P P ∨Q Q ∨ P

EXAMPLE 5. Rewrite the following predicates (over R) using disjunction or conjunction without using
the absolute value sign.

(a) P (x) : |x| ≥ 10.

(b) P (x) : |x| < 10.

NEGATION

DEFINITION 6. If P is a mathematical statement, then the nega-
tion/denial of P , written ¬P (read “not P”), is the mathematical
statement “P is false”.

Although ¬P could always be expressed as
It is not the case that P .

there are usually better (useful) ways to express the statement ¬P .

TRUTH TABLE

P ¬P
T

F

If a statement is true, then its negation is false (and if a statement is false, then

its negation is true).

REMARK 7. Often, a more useful way to express the negated statement is to express it “positively”, if
possible. The following statements might be useful for that.

FACT Every integer is either even, or odd.

Trichotomy Axiom Given fixed real numbers a and b, exactly one of the statements a < b, a = b, b < a
is true.

EXAMPLE 8. Negate the following propositions in a useful way.

1. P : The integer 7 is even.
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2. P : 53 = 120 ¬P :

Implications

DEFINITION 9. Let P and Q be statements. The implication P ⇒ Q (read “P implies Q”) is the
statement “If P is true, then Q is true.”

In implication P ⇒ Q, P is called assumption, or hypothesis, or antecedent; and Q is called conclusion
or consequent.

EXAMPLE 10. If you score 90% or above in this class, then you get A.

The truth table for implication:

P Q P ⇒ Q

T T T

T F F

F T T

F F T

REMARK 11. A false statement implies anything.

Alternative Expressions for P ⇒ Q.

If P , then Q. P implies Q. P only if Q. P is sufficient for Q.
Q if P . Q when P . Q is necessary for P .
Q whenever P . Q, provided that P . Whenever P , then also Q.

Converse and Contrapositive

DEFINITION 12. The statement Q⇒ P is called a converse of the statement P ⇒ Q.

DEFINITION 13. The statement (¬Q)⇒ (¬P ) is called a contrapositive of the statement P ⇒ Q.

EXAMPLE 14.

Statement S (x = 2)⇒ (x+ 1 = 3) True/ False

Converse of S True/ False

Contrapositive of S True/ False

EXAMPLE 15.

Statement S (x = 2)⇒ (x2 − 4 = 0) True/ False

Converse of S True/ False

Contrapositive of S True/ False

Biconditional “⇔”

For statements P and Q,
(P ⇒ Q) ∧ (Q⇒ P )

is called the biconditional of P and Q and is denoted by P ⇔ Q . The biconditional P ⇔ Q is stated
as
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“P is equivalent to Q.” or “P if and only if Q.” (or “P iff Q.”)
or as “P is a necessary and sufficient condition for Q.”

P Q P ⇒ Q Q⇒ P P ⇔ Q

T T

T F

F T

F F

EXAMPLE 16. Complete:

(a) The biconditional “The number 17 is odd if and only if 57 is prime.” is .

(a) The biconditional “The number 24 is even if and only if 17 is prime.” is .

(a) The biconditional “The number 17 is even if and only if 24 is prime.” is .

Logical Equivalence

DEFINITION 17. Two compound statements are logically equivalent (write “≡”) if they have the
same truth tables, which means they both are true or both are false.

Question: Are the statements P ⇒ Q and Q⇒ P logically equivalent?

Some Fundamental Properties of Logical Equivalence

THEOREM 18. Let P , Q and R be statement forms. Then

1. Double Negation Law
¬(¬P ) ≡ P

2. Idempotent Laws
P ∨ P ≡ P
P ∧ P ≡ P

3. Commutative Laws
P ∨Q ≡
P ∧Q ≡

4. Associative Laws
P ∨ (Q ∨R) ≡
P ∧ (Q ∧R) ≡

5. Distributive Laws
P ∨ (Q ∧R) ≡
P ∧ (Q ∨R) ≡

6. P ∨ (Q ∨R) ≡ (P ∨Q) ∨ (P ∨R)
P ∧ (Q ∧R) ≡ (P ∧Q) ∧ (P ∧R)

7. De Morgan’s Laws
¬(P ∨Q) ≡ (¬P ) ∧ (¬Q)
¬(P ∧Q) ≡ (¬P ) ∨ (¬Q)



c© Oksana Shatalov, Fall 2019 6

Proof. Each part of the theorem is verified by means of a truth table or/and by a deductive proof.

P Q P Q
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THEOREM 19. Let Pand Q be statement forms. Then

(a) ¬(P ⇒ Q) ≡ P ∧ (¬Q).

(b) P ⇒ Q ≡ (¬P ) ∨Q

(c) P ⇒ Q ≡ (¬Q)⇒ (¬P ) (i.e. every negation is logically equivalent to its contrapositive!)

(d) P ⇒ Q is NOT logically equivalent to Q⇒ P

Proof.

(a) Method 1: use truth tables

P Q P ⇒ Q ¬(P ⇒ Q)

T T

T F

F T

F F

P Q ¬Q P ∧ (¬Q)

T T

T F

F T

F F

Method 2: deductive proof

Note that P ⇒ Q is false only if .

Thus ¬(P ⇒ Q) is true only if .

On the other hand, P∧(¬Q) is true only if or only if .

(b)

(c) Use truth tables.

P Q P ⇒ Q ¬Q ¬P ¬Q⇒ ¬P

(d)

COROLLARY 20. P ⇔ Q ≡ (¬Q)⇔ (¬P )
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EXAMPLE 21. Determine if the following statements are logically equivalent. Then negate all of them.

STATEMENT NEGATION

If the integer 5 is even, then 5 is prime.
The integer 5 is not even or 5 is prime.
If the integer 5 is not prime, then 5 is not even.

Tautologies and Contradictions

Tautology (>) is a statement that is always true.
Contradiction (⊥) is a statement that is always false

P ¬P P ∨ (¬P ) P ∧ (¬P )

T

F

Methods to verify tautology/contradiction: truth table and deductive proof.

THEOREM 22. Let P be a statement form. Then

(a) Identity Laws
P ∧ > ≡ P
P ∨ ⊥ ≡ P

(b) Domination Laws
P ∨ > ≡ >
P ∧ ⊥ ≡ ⊥

(c) Negation Laws
P ∨ (¬P ) ≡ >
P ∧ (¬P ) ≡ ⊥

REMARK 23. Let P and Q be statements. The biconditional P ⇔ Q is a tautology if and only if P and
Q are logically equivalent. So, the statements of Theorems 18 and 19 can be rewritten using tautologies.
For example, by Theorem 19 (a), we obtain that the statement ¬(P ⇒ Q) ⇔ P ∧ (¬Q) is a tautology,
i.e.

(¬(P ⇒ Q)⇔ (P ∧ (¬Q))) ≡ >.

Quantified Statements

EXAMPLE 24. Consider the following predicate over N :
P (n) : 4n+ 3 is prime.

How to convert this predicate into a proposition with a truth value?

A predicate can be made into a proposition by using quantifiers.
Universal: ∀x means for all/for every assigned value a of x.
Existential: ∃x means that for some assigned values a of x.

Quantified statement in symbols Quantified statement in words

“∀x ∈ D,P (x).” or “(∀x ∈ D)P (x).” “For every x ∈ D, P (x).”
“If x ∈ D, then P (x).”

“∃x ∈ D 3 P (x)” or “(∃x ∈ D)P (x)” “There exists x such that P (x).”
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Once a quantifier is applied to a variable, then the variable is called a bound variable. The variable that
is not bound is called a free variable.

Expressions that can be used in place of for all are
for every, for arbitrary, for any, for each, and given any.

Expression that can be used in place of their exists are
there is a, we can find a, there is at least one, for some, and for at least one.

EXAMPLE 25. For each of the following propositions, determine if it has any universal or existential
quantifiers. If it has universal quantifiers, rewrite it in the form “for all . . .”. If it has existential
quantifiers, rewrite it in the form “there exists . . . such that . . .”.

1. The area of a rectangle is its length times its width.
Quantifiers:

2. A triangle may be equilateral.
Quantifiers:

3. 15− 5 = 10
Quantifiers:

EXAMPLE 26. Rewrite the following statements in symbols. Introduce variables, where appropriate.

a) The formula x+ 5 = 7 holds for some real number x.

b) For every integer n, either n ≤ 1 or n2 ≥ 4.

c) The sum of an even integer and an odd integer is even.

d) All positive real numbers have a square root. (Do not use symbol
√

.)

Universal Conditional Propositions

The proposition of the form
∀x ∈ D,P (x) (1)

can be rewritten as
∀x, (x ∈ D)⇒ P (x). (2)

If, in addition, there is a set A containing the set D, then (1) and (2) can be expressed as

∀x ∈ A, (x ∈ D)⇒ P (x). (3)

We will say that the propositions (2) and (3) are conditional forms of the universal proposition (1).
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EXAMPLE 27. Express the proposition

Every octagon has eight sides.

in a conditional form.

EXAMPLE 28. Express the proposition

Between any two real numbers there is a rational number.

in a conditional form in two different ways.

Converse and contrapositive of universal conditional propositions

Consider the proposition
∀x ∈ D,P (x)⇒ Q(x). (4)

Applying Definitions 12 and 13, we, respectively, obtain

The converse of (4): ∀x ∈ D,Q(x)⇒ P (x).

Keep in mind Theorem 19(d).

The contrapositive of (4): ∀x ∈ D, (¬Q(x))⇒ (¬P (x)).

Keep in mind Theorem 19(c).

EXAMPLE 29. Rewrite the statement

If m and n are odd integers then m+ n is even.

in symbols. Then write its contrapositive and converse both in symbols and words.
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NEGATIONS of quantified statements

Rules to negate quantified propositions
Negation

∀x ∈ D,P (x) ∃x ∈ D 3 (¬P (x))

∃x ∈ D 3 P (x) ∀x ∈ D, (¬P (x))

EXAMPLE 30. Negate the following

∃x ∈ D 3 (P (x) ∧Q(x))

∀x ∈ D, (P (x)⇒ Q(x))

REMARK 31. Often, a more useful way to express the negated statement is to express it “positively”,
if possible. Using Trichotomy Axiom, DeMorgan’s Law etc is useful. Also if the statement is quantified,
the quantifier must be identified and replaced accordingly in order to get a useful denial.

EXAMPLE 32. Write a useful negation

1. S: All continuous functions are differentiable.

¬S :

2. S : A triangle may be equilateral.

¬S :

EXAMPLE 33. The goal of this exercise is to obtain a useful negation of the given statement S. The
following steps might be helpful.

1. Rewrite S in symbols using quantifiers (it might be helpful to introduce temporary variables).

2. Express the negation of S in symbols using the above rules.

3. Express ¬S in words (try to use the same wording as in original statement).

a) S: There exists a prime number p which is greater than 7 and less than 10.

S

¬S

¬S

b) P : For every even integer n there exists an integer m such that n = 2m.

S

¬S

¬S
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c) P : If n is an odd integer then 3n+ 7 is odd.

S

¬S

¬S

d) S: If n is an integer and n2 is a multiple of 4 then n is a multiple of 4.

S

¬S

¬S

Alternative Expressions for P ⇒ Q. Necessary and Sufficient Conditions

If P , then Q. P implies Q. P only if Q. P is sufficient for Q.
Q if P . Q when P . Q is necessary for P .
Q whenever P . Q, provided that P . Whenever P , then also Q.

• A condition Q is said to be necessary for a condition P , if (and only if) the falsity of Q guarantees
the falsity of P .

• A condition P is said to be sufficient for a condition Q, if (and only if) the truth of P guarantees
the truth of Q.

EXAMPLE 34. Consider the following predicates
P (x) : x is a multiple of 4. Q(x) : x is even. Complete:

• “For every integer integer x, P (x)⇒ Q(x)” is .

• P (x) is a condition for Q to be true.

• Q(x) is a condition for P (x) to be true.

• Q(x) is not a condition for P (x) to be true.

EXAMPLE 35. Consider the following predicates
P (f) : f is a differentiable function.
Q(f) : f is a continuous function.
Complete:

• “For every real-valued function f, P (f)⇒ Q(f)” is .

• “For every real-valued function f,Q(f)⇒ P (f)” is .

• Q(f) is a condition for f to be differentiable, but not a
condition.

• P (f) is a condition for f to be continuous.
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1.2&2.1 Proof

Logical arguments

Most theorems (or results) are stated as implications.

Trivial and Vacuous Proofs2

Let P (x) and Q(x) be predicates over a domain D. Consider the quantified statement ∀x ∈ D,P (x) ⇒
Q(x), i.e.

For every x ∈ D, if P (x) then Q(x). (#)
or Let x ∈ D. If P (x), then Q(x).

The truth table for implication P (x)⇒ Q(x) for an arbitrary (but fixed) element x ∈ D:

P (x) Q(x) P (x)⇒ Q(x)

T T T

T F F

F T T

F F T

Trivial Proof If it can be shown that Q(x) is true for all x ∈ D (regardless the truth value of P (x)),
then (#) is true (according the truth table for implications).

Vacuous Proof If it can be shown that P (x) is false for all x ∈ D (regardless of the truth value of
Q(x)), then (#) is true (according the truth table for implications).

EXAMPLE 36. Determine the truth or falsehood of the following statements.

(a) For every real x, if x2 < 0, then x6 − 3x4 + x+ 3 < 0.

(b) For every real x, if x6 − 3x4 + x+ 3 < 0, then ex > 0.

(c) If a real valued function is differentiable at some point, then it is also continuous there.

2These kind of proofs are rarely encountered in mathematics, however, we consider them as important reminders of
implications.
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Integers and some of their basic properties and definitions

Let a, b, c ∈ Z:

Axiom w.r.t.addition w.r.t. multiplication

Closure a+ b ∈ Z a · b ∈ Z
Associative (a+ b) + c = a+ (b+ c) (ab)c = a(bc)

Commutative a+ b = b+ a ab = ba

Distributive a(b+ c) = ab+ ac

Identity ele-
ment

a+ 0 = a a · 1 = a Note: 0 6= 1
and a · 0 = 0.

Inverse ele-
ment

There exists a unique
integer −a = (−1) · a
such that a+ (−a) = 0

property w.r.t.addition w.r.t. multiplication

Subtraction b− a := b+ (−a)

No divisors of 0
(The zero prod-
uct property)

If ab = 0 then a = 0 or b = 0.

Cancellation
Law

If a+ c = b+ c, then a = b. If ab = ac and a 6= 0, then b = c.

Order properties:

1. If a < b and b < c then a < c. (transitivity)

2. Exactly one of a < b or a = b or a > b holds. (trichotomy)

3. If a < b, then a+ c < b+ c.

4. If c > 0, then a < b iff ac < bc. If c < 0, then a < b iff ac > bc.

Mathematical definitions are always biconditional statements.
Recall that by Corollary 20

P ⇔ Q ≡ (¬Q)⇔ (¬P )

DEFINITION A. An integer n is defined to be even if n = 2k for some integer k. An integer n is
defined to be odd if n = 2k + 1 for some integer k.

EXAMPLE 37. Fill in the blanks:

• The number 8 is even because 8 = 2( ). Here, plays the role of n and plays the role of k
in the definition.

• The number −11 is even because −11 = 2( ) + 1. Here, plays the role of n and plays the
role of k in the definition.
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DEFINITION B. The parity of an integer refers to its odd-
ness or evenness. Two integers are said to be of the
same parity if they are both even, or both odd. Two in-
tegers are said to be of opposite parity if one of them
is even and the other is odd.

FACT Every integer is either even, or odd.

DEFINITION C. For any integer n, we call the pair of inte-
gers n and n+ 1 consecutive.

DEFINITION D. Let a and b be integers. We say that b divides a, written b|a, if there is an integer
c such that bc = a. We say that b and c are factors of a, or that a is divisible by b and c.

DIRECT PROOFS

To prove (directly) a universal statement “For all x ∈ D, S(x) is true”:

• Assume x is an arbitrary (but now fixed) element x ∈ D.

• Demonstrate that S(x) is true.

EXAMPLE 38. Let n ∈ E. Prove that 5n5 + n+ 6 is even.

Proof. Let n ∈ E. Since n is even, there is an integer k for which . Now we get

5n5 + n+ 6 = = .

Therefore 5n5 + n+ 6 is even, because . �

To prove (directly) a universal conditional statement “For all x ∈ D, P (x)⇒ Q(x)”:

• Assume that P (x) is true for an arbitrary (but now fixed) element x ∈ D.

• Draw out consequences of P (x).

• Use these consequences to show that Q(x) must be true as well for this element x.
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REMARK 39. Note that if P (x) is false for some x ∈ D, then P (x)⇒ Q(x) is for this element
x. This is why we need only be concerned with showing that P (x)⇒ Q(x) is true for all x ∈ D for which
P (x) is true.

EXAMPLE 40. The following is an attempted proof of a result. What is the result and is the attempted
proof correct?

Proof. Let a be an even integer and b be an odd integer. Then a = 2n and b = 2n+1 for some integer
n. Therefore,

3a− 5b = 3(2n)− 5(2n+ 1) = 6n− 10n− 5 = −4n− 5 = 2(−2n− 2)− 1.

Since −2n− 2 is an integer, 3a− 5b is odd. �

THEOREM 41. 1. The sum and product of every two even integers is even.

2. The sum of every two odd integers is even.

3. The product of every two odd integers is odd.

HINT: First express the statements in the form “For all . . . , if . . . then. . . ” using symbols to represent
variables.
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EXAMPLE 42. Let a, b, c, d ∈ Z with a 6= 0 and b 6= 0. Prove the following:

(a) If a|b and b|c, then a|c.

(b) If a|c and b|d, then ab|cd.

PROOF BY CASES

may be useful while attempting to give a proof of a statement concerning an element x in some set D.
Namely, if x possesses one of two or more properties, then it may be convenient to divide a case into
other cases, called subcases.

Result Possible cases

∀n ∈ Z, R(n) Case 1. n ∈ E; Case 2.

∀x ∈ R, Q(x) Case 1. x < 0; Case 2. Case 3. x > 0

∀n ∈ Z+, P (n) Case 1. ; Case 2. n ≥ 2.
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EXAMPLE 43. Prove that the product of any two consecutive integers is even.

Disproving Statements

Case 1. Counterexamples

Let S(x) be a predicate over a domain D. If the quantified statement (∀x ∈ D,S(x).) is false, then its
negation is true, i.e.

Such an element x is called a counterexample of the false statement ∀x ∈ D,S(x).

EXAMPLE 44. Disprove the statement: “If n ∈ O, then 3|n2 + 2.”

Solution.

EXAMPLE 45. Negate the statement: “For all x ∈ D,P (x)⇒ Q(x).”

The value assigned to the variable x that makes P (x) true and Q(x) false is a counterexample of
the statement “For all x ∈ D,P (x)⇒ Q(x).”

EXAMPLE 46. Prove or disprove the following statement.
If n is an integer and n2 is a multiple of 4, then n is a multiple of 4.
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EXAMPLE 47. Disprove the following statement:
If a real-valued function is continuous at some point, then this function is differentiable there.

Case 2: Existential Statements

Consider the quantified statement ∃x ∈ D 3 S(x). If this statement is false, then its negation is true, i.e.

EXAMPLE 48. Disprove the statement: “There exist an even integer n such that 3n+ 5 is even.”

Summary

• To disprove a universal statement, provide a counterexample.

• To disprove an existential statement, formulate a negation of it and provide a proof of the negation.

2.2 Indirect proofs: Proofs by contradiction and contrapositive

Contrapositive

Recall that the statement ¬Q⇒ ¬P is called the contrapositive of the statement P ⇒ Q. Moreover,

P ⇒ Q ≡ ¬Q⇒ ¬P.

In other words, in order to prove P ⇒ Q, we may choose instead to prove ¬Q⇒ ¬P .

PROOF BY CONTRAPOSITIVE

Let P (x) and Q(x) be predicates over a domain D. To prove a universal conditional statement
“for all x ∈ D, P (x)⇒ Q(x)”

• Assume that ¬Q(x) is true for an arbitrary (but now fixed) element x ∈ D.

• Draw out consequences of ¬Q(x).

• Use these consequences to show that ¬P (x) must be true as well for this element x.

• It follows that P (x)⇒ Q(x) for all x ∈ D.
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REMARK 49. If you use a contrapositive method, you must declare it in the beginning and then state
what is sufficient to prove.

EXAMPLE 50. Let x be an integer. If 5x− 7 is even, then x is odd.

EXAMPLE 51. Let x, y ∈ Z. If 7 6 |xy, then 7 6 |x and 7 6 |y.
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Proving biconditional statements

Prove that ∀x ∈ D,P (x)⇔ Q(x).
Proof. Let x ∈ D.
Assume P (x). Then show Q(x).
Conversely, assume Q(x). Then show P (x).�

EXAMPLE 52. Let x, y ∈ Z. Prove that x and y are of opposite parity if and only if x+ y is odd.
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THEOREM 53. Let n be an integer. Then n is even if and only if n2 is even.

Proof.

COROLLARY 54. Let n be an integer. Then n is odd iff n2 is odd.

COROLLARY 55. For every integer n, both n and n2 are of the same parity.

EXAMPLE 56. Let x ∈ Z. Prove that if 2|(x2 − 1) then 4|(x2 − 1).
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PROOF BY CONTRADICTION

To prove a statement S is true by contradiction:

• Assume that ¬S is true.

• Deduce a contradiction.

• Then conclude that S is true.

REMARK 57. If you use a proof by contradiction to prove that S, you should alert the reader about that by saying (or
writing) one of the following

• Suppose that the statement S is false.

• Assume, to the contrary, that the statement S is false.

• By contradiction, assume, that the statement S is false.

THEOREM 58. Every integer is either even, or odd.

REMARK 59. If you use a proof by contradiction to prove a universal conditional statement ∀x ∈ D,P (x) ⇒ Q(x), then
the proof begins by assuming the existence of a counterexample of this statement. Therefore, the proof might begin with
one of the following.

• Assume, to the contrary, that there exists some element x ∈ D for which P (x) is true and Q(x) is false.

• By contradiction, assume, that there exists an element x ∈ D such that P (x) is true, but ¬Q(x) is true.

PROPOSITION 60. If m and n are integers, then m2 6= 4n+ 2.

Proof.
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COROLLARY 61. The equation m2 − 4n = 2 has no integer solutions.

COROLLARY 62. If the square of an integer is divided by 4, the remainder cannot be equal 2.

COROLLARY 63. The square of an integer cannot be of the form 4n+ 2, n ∈ Z.

Summary of Three Proof Techniques

How to prove that ∀x ∈ D,P (x)⇒ Q(x).

Technique direct proof proof by contrapositive proof by contradiction

Assume

Goal

Existence Proofs

An existence theorem can be expressed as a quantified statement
∃x ∈ D 3 S(x) :

There exists x ∈ D such that S(x) is true.

A proof of an existence theorem is called an existence proof.
One simple way to prove existence is to provide an object that has the desired property This sort of

proof is called constructive proof (see Example 64 below). But not all existence proofs are constructive
can prove existence through other methods (e.g., proof by contradiction) Such indirect existence proofs
called nonconstructive proofs (see Example 65 below).

EXAMPLE 64. There exist real numbers a and b such that
√
a2 + b2 = a+ b.

Proof.

Recall that the Intermediate Value Theorem of Calculus implies that if a continuous function takes
values of opposite sign inside an interval, then it has a root in that interval.
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EXAMPLE 65. Prove that the polynomial f(x) = x3 +x2−1 has a real root between x = 2/3 and x = 1.

Proof.

Uniqueness Proof

An element belonging to some prescribed set D and possessing a certain property P is unique if it is
the only element of D having property P . A typical way to prove uniqueness is a proof by contradiction:
Assume that x and y are distinct elements of D and show that x = y.

EXAMPLE 66. If a and b are real numbers and a 6= 0, then there is a unique real number r such that
ar + b = 0.

3.1 Principle of Mathematical Induction

”Domino Effect”

Step 1. The first domino falls.

Step 2. When any domino falls, the next domino falls.

Conclusion. All dominoes will fall!
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THEOREM 67. (Principle of Mathematical Induction (PMI)) Let P (n) be a statement about the
positive integer n so that n is a free variable in P (n). Suppose the following:

- The statement P (1) is true.

- For all positive integers k, if P (k) is true, then P (k + 1) is true.

Then, for all positive integers n, P (n) is true.

Strategy

The proof by induction consists of the following steps:

Base Case: Verify that P (1) is true.

Inductive hypothesis: Assume that k is a positive integer for which P (k) is true .

Inductive Step: With the assumption made, prove that P (k + 1) is true.

Conclusion: P (n) is true for every positive integer n.

EXAMPLE 68. Prove by induction the formula for the sum of the first n positive integers

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
. (5)

Proof. Given a positive integer n, let P (n) be the statement

1 + 2 + . . . n =
n(n+ 1)

2
.

Base Case: Since 1 = 1(1+1)
2 , we conclude P (1) is true.

Induction hypothesis: Assume that k is a natural number for which P (k) is true, i.e.

(6)

Induction step: With the assumption made, establish that P (k + 1) is true, which is equivalent to
showing that

(7)

To show that P (k+1) is true, notice that 1+2+. . . k+(k+1) =

Thus P (k + 1) is true.

Conclusion: It now follows by Principle of Mathematical Induction that P (n) is true for every positive
integer n.�



c© Oksana Shatalov, Fall 2019 27

EXAMPLE 69. Prove that 3|(8n − 5n) for every positive integer n.
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EXAMPLE 70. Find the sum of all odd numbers from 1 to 2n+ 1 (n ∈ Z+).


