Math 300 – Homework 1

Due Thursday 9/6 at the beginning of class

Total points: 195 (Writing portion: 100 pts (all the problems marked by *).)

PART A*

Problems from the textbook:

•	Section 1.1	problem	2(b)	3(b)	4(d,e)
		points	5	5	10

PART B

- 1. 10 points For the predicate $P(x): (x^3+1)(x^2-3) = 0$, where $x \in \mathcal{U}$, determine:
 - (a) the values of x for which P(x) is a true statement if $\mathcal{U} = \mathbb{R}$.
 - (b) the values of x for which P(x) is a false statement if $\mathcal{U} = \mathbb{N}$.
- 2. 21 points Determine whether each of the following sentences is a proposition, predicate, or neither.
 - (a) $20^2 + 20^2 > 2020^2$
 - (b) $x^2 = -1$.
 - (c) For every real number $x, x^2 \neq -1$.
 - (d) The product of every two prime numbers is odd.
 - (e) Schreck is six feet tall.
 - (f) Harry Potter and the Sorcerer's Stone.
 - (g) Give an example of integrable function.
- 3. 20 points State the negation for each of the following propositions.
 - (a) $\sqrt{3}$ is a rational number.
 - (b) 0 is not a negative number.
 - (c) The real number r is at most $\sqrt{3}$
 - (d) Two sides of a triangle have the same length.
 - (e) The point P on the plane lies outside of the circle C.
- 4. * 10 points For the predicates $p(x) : x + 1 \ge 4$ and q(x) : 13 < 4x over a domain (universe) $S = \{0, 2, 3, 4, 6\}$, determine all values of $x \in S$ for which the biconditional $P(x) \Leftrightarrow Q(x)$ is true. Show all work.
- 5. 12 points In each of the following statements identify the hypothesis (assumption) and conclusion. Represent your answers in the following form:

Hypothesis:

Conclusion:

- (a) If a is irrational, then 2a is irrational.
- (b) a^3 is an even integer whenever a is an even integer.
- (c) In order to pass the drivers test, the candidate must be able to parallel park.
- 6. 32 points Consider the following propositions

 $P: 2018 \in 3\mathbb{Z}$ and $Q: 3^{2018} \in \mathbb{O}$.

Write each of the following compound statements in words and indicate whether it is true or false. (a) P; (b) Q; (c) $\neg P$; (d) $P \lor Q$; (e) $P \land Q$; (f) $P \Rightarrow Q$; (g) $\neg Q \Rightarrow P$; (e) $P \Leftrightarrow Q$. NAME (print)_____

70 points PART C*

Rewrite each sentence according to provided guidelines (see "Communicating Mathematics" on eCampus), then using complete sentences give a reason to changes you made.

- 1. In mathematics, an irrational number r is a real number that cannot be expressed as a ratio of integers, e.g. as a fraction.
- 2. Let a, b, c, M, and N be given integers.
- 3. $m^4 + m^2 + 2018$ is positive for every real m.
- 4. Pure mathematics topics often turn out to have applications, i.e. number theory in cryptography.
- 5. If x, y are integers of the same parity, then x + y is even.
- 6. The square of every integer n is even.
- 7. f is differentiable everywhere.
- 8. Every number $\in \mathbb{E}$ is divisible by 2.