Math 300 - Homework 3

Due Thursday $9 / 19$ at the beginning of class

Total points: 218 (Writing portion: 80 pts (all the problems marked by *).)

PART A

Problems from the textbook:

- Section 1.1 | | problem | $15(\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{g}, \mathrm{h}, \mathrm{i})$ |
| :---: | :---: | :---: |
| | points | $16(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$ |
| | 50 | |
- Section 1.2 | problem | $1(\mathrm{~b})^{*}$ | $2(\mathrm{a}, \mathrm{b})^{*}$ | 4^{*} |
| :---: | :---: | :---: | :---: |
| | points | 10 | 20 |

PART B

1. [4 points] Write the following statement using "if, then":
"A sufficient condition for a triangle to be isosceles is that it has two equal angles."
2. [6 points] Consider the following definition:

A real-valued function $f(x)$ is said to be one to one if for all $x_{1}, x_{2} \in \mathbb{R}$, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Write the negation of this definition completing the following: "A real-valued function $f(x)$ is said to be not one to one if ..."
3. Consider the following definition:

A real-valued function $f(x)$ is said to be decreasing on the closed interval $[a, b]$, if for all $x_{1}, x_{2} \in[a, b]$, if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$.
(a) [6 points] Write the negation of this definition completing the following: "A real-valued function $f(x)$ is said to be not decreasing on the closed interval $[a, b]$, if ..."
(b) [6 points] Give an example of a function that is decreasing on the interval [1,3] and based on the above definition explain why your example is correct.
(c) [6 points] Give an example of a function that is not decreasing on the interval [1,3$]$ and based on the negation of the above definition explain why your example is correct.
4. [18 points] Let n represents some fixed integer. In each of the following statements identify the hypothesis (assumption) and conclusion.
(a) The number n divides 5 only if n divides 10 ,
(b) The condition $n^{2} \in 3 \mathbb{Z}$ is necessary for n to be a multiple of 3 .
(c) The condition $n \in \mathbb{E}$ is sufficient for n to be a multiple of 4 .
5. [12 points] For the statement
S : ' 'For every integer n, if n is divisible by 3 and n is divisible by 5 , then n is divisible by 15.'' write in a useful form
(a) the converse of S;
(b) the contrapositive of S.
(c) the converse of the contrapositive of S;
(d) the contrapositive of the converse of S.
6. * [10 points $]$ Let $x \in \mathbf{R}$. Prove that if $|x|<1$, then $x^{2}-2 x+2 \neq 0$.
7. * [10 points] Let $x \in \mathbf{R}^{+}$. Prove that if $x^{4}-2 x^{2}+2 \leq 0$, then $x^{2019} \geq 2019$.
8. * [10 points] Prove that if n is an even integer, then $n^{2019}+19(n-1)^{2}-2019$ is even. (Give a formal proof).
9. * [10 points] Prove that if x and y are odd integers, then $x z+3 y z$ is even for every integer z. (Give a formal proof).

