Math 300 – Homework 4

Due Thursday 9/26 at the beginning of class

Total points: 190 (Writing portion: 190 pts (all the problems marked by *).)

PART A

Problems from the textbook:

•	Section 2.1	problem	4*	$5(a,b,e,i)^*$
		points	10	40

PART B

- 1. *[50 points] Let $x, y, z \in \mathbb{Z}$. Give a formal proof of the following statements.
 - (a) If 7x + 5 is odd, then x is even.
 - (b) If xy is odd, then x and y are odd.
 - (c) If 3x + 7y is even, then x and y are of the same parity.
 - (d) If $x \not| yz$, then $x \not| y$ and $x \not| z$.
 - (e) The integers 13x 11 and 17x + 2 are of opposite parity.
- 2. * [10 points] Prove that the sum of every three consecutive integers is divisible by 3. (Give a formal proof.)
- 3. * [40 points] Let a and b be integers. Prove the following statements.
 - (a) If a|b, then $a|(b^{2018} b^{2020} + 2019b)$.
 - (b) If $a^2|a$, then $a \in \{-1, 0, 1\}$.
 - (c) If a|b and b|a, then a = b or a = -b.
 - (d) If a|b, then $a^2|b^2$.
- 4. * [40 points] Prove or disprove the following statements:
 - (a) If $a, b, c \in \mathbb{R}$, then $\sqrt{a^2 + b^2 + c^2} = \sqrt{a^3 + b^3 + c^3}$.
 - (b) For all positive integers x, y, and z, the equality $x^{y^z} = (x^y)^z$ holds.
 - (c) If $k \in \{0, \frac{1}{2}, 1, \frac{3}{2}, 2\}$, then $4^k + 3^{2k} + 4k(k-1)(2k-1)$ is prime.
 - (d) If $x, y \in \mathbb{R}$, then |x y| = |x| |y|.