Math 300 - Homework 5

Total points: 0

PART A

Problems from the textbook:

- Section 2.2 \# 3, 5
- Section 3.1 \# 1, 2, 11, 13.

PART B

1. Prove that if a and b are odd integers, then $4 X\left(a^{2}+b^{2}\right)$.
2. Prove that if x is an integer, then x^{3} has the same parity as x.
3. (a) Let $n \in \mathbb{Z}$. Prove that if $2 \mid\left(n^{2}-5\right)$, then $4 \mid\left(n^{2}-5\right)$.
(b) Give an example of an integer n such that $2 \mid\left(n^{2}-5\right)$, but $8 X\left(n^{2}-5\right)$
4. Consider the statement:
"If the product of two integers is even, then at least one of these integers is even."
(a) Rewrite the statement in symbols.
(b) Give a formal proof.
5. Let a be a positive real number. Prove that there is a unique positive real number x such that $x^{4}-a^{4}=0$.
6. Prove by induction that if n is a positive integer, then $9^{n}-4^{n} \in 5 \mathbb{Z}$.
