Math 300 – Homework 6

Due Thursday 10/17 at the beginning of class

Total points: 258 (Writing portion: 85 pts (all the problems marked by *).)

PART A

Problems from the textbook:

•	Section 4.1	problem	1(a,b,d,g,j)	4*	5*				
		points	20	10	10]			
•	Section 4.2	problem	$1(a,b,h,f)^*$	2^{*}	11	15	16(c)	17	18
		points	40	10	5	10	5	5	15

PART B

1. [20 points] Consider the following sets:

$$A = \{ n \in \mathbb{R} | |n| < 2 \}, \quad B = \{ n \in \mathbb{Z} | n^3 = n \}, \quad C = \{ n \in \mathbb{Z} | n^2 \le n \},$$
$$D = \{ x \in \mathbb{Z} | x^2 \le x \}, \quad E = \{ -1, 0, 1 \}, \quad F = \{ t \in \mathbb{Z} | |t| < 2 \}$$

Determine whether the following statements are true or false. justify your answers.

- (a) A = E
- (b) C = D
- (c) $C \subset B$
- (d) $F \subset A$
- 2. [10 points] Let A, B and C be nonempty subsets of a universal set U. Draw a Venn diagram for each of the following set operations.
 - (a) $(B \cup (A C)) \cup B$ (b) $A \cap (C B)$
- 3. * [15 points] Let A, B, and C be nonempty subsets of a universal set U. Disprove the following statements. (Hint: Venn Diagram might help to find a counterexample).
 - (a) If A is not a subset of B and B is not a subset of A, then $A \cap B = \emptyset$.
 - (b) If $A \cap B = A \cap C$, then B = C.
 - (c) If A B = C B, then implies A = C.
- 4. [9 points] Describe the following sets by listing their elements.
 - (a) The set of all reminders when an even integer is divided by 4.
 - (b) The set of all odd integers of absolute value less or equal than 7.
- 5. [12 points] Describe the following sets by listing enough elements to indicate a pattern for all elements of the set.

- (a) The set of all numbers x for which $\tan x$ is undefined.
- (b) $A = \{3q 2 | q \in \mathbb{Z}\}$
- 6. [20 points] Let $U = \{1, \{2\}, a, b, c\}$ be the universal set and let $A = \{a, b, 1, \{2\}\}, B = \{b, c\}, C = \{1, \{2\}, a, c\}$. Determine the following (show all intermediate steps):
 - (a) $\overline{A} \cup (B \cap C)$
 - (b) $\overline{B \cup C} \cap U$
 - (c) $\overline{(A \cup B) (B \cap C)}$
 - (d) $(B \cap C) \times A$
- 7. 10pts Given $A = \{x \in \mathbb{Z} | |x| > 10\}$. Compute the complement of A, if
 - (a) $U = \mathbb{Z}$.
 - (b) $U = \mathbb{R}$.
- 8. [12 points] Let $U = \mathbb{R}$ be the universal set. Consider $A = \{x \in \mathbb{R} | |x 1| \ge 4\}$ and $B = \{x \in \mathbb{R} | |\frac{x}{2} 20| > 1\}.$
 - (a) Express the sets A and B using interval notation (as an interval or a union of intervals).
 - (b) Determine $A \cap \overline{B}$ as an interval or a union of intervals.
- 9. [20 points] Assume that A, B and C are sets and P, Q and R are propositions. Characterize the following expressions as either
 - (i) a proposition/statement
 - (ii) not a proposition/statement, but an expression that makes sense mathematically.
 - (iii) an expression that makes no sense mathematically.

(Write i, ii, or iii as an answer for each item.)

- (i) $\overline{|i/ii/iii|} P = Q \wedge R$
- (j) $i / ii / iii B \cap A C$