Math 300 - Homework 6

Due Thursday 10/17 at the beginning of class

Total points: 258 (Writing portion: 85 pts (all the problems marked by *).)

PART A

Problems from the textbook:

- Section 4.1 | problem | $1(\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{g}, \mathrm{j})$ | 4^{*} | 5^{*} |
| :---: | :---: | :---: | :---: |
| | points | 20 | 10 |
- Section 4.2 | problem | $1(\mathrm{a}, \mathrm{b}, \mathrm{h}, \mathrm{f})^{*}$ | 2^{*} | 11 | 15 | $16(\mathrm{c})$ | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | points | 40 | 10 | 5 | 10 | 5 | 5 |

PART B

1. [20 points] Consider the following sets:

$$
\begin{gathered}
A=\{n \in \mathbb{R}| | n \mid<2\}, \quad B=\left\{n \in \mathbb{Z} \mid n^{3}=n\right\}, \quad C=\left\{n \in \mathbb{Z} \mid n^{2} \leq n\right\}, \\
D=\left\{x \in \mathbb{Z} \mid x^{2} \leq x\right\}, \quad E=\{-1,0,1\}, \quad F=\{t \in \mathbb{Z}| | t \mid<2\}
\end{gathered}
$$

Determine whether the following statements are true or false. justify your answers.
(a) $A=E$
(b) $C=D$
(c) $C \subset B$
(d) $F \subset A$
2. [10 points] Let A, B and C be nonempty subsets of a universal set U. Draw a Venn diagram for each of the following set operations.
(a) $(B \cup(A-C)) \cup B$
(b) $A \cap(C-B)$
3. * [15 points] Let A, B, and C be nonempty subsets of a universal set U. Disprove the following statements. (Hint: Venn Diagram might help to find a counterexample).
(a) If A is not a subset of B and B is not a subset of A, then $A \cap B=\emptyset$.
(b) If $A \cap B=A \cap C$, then $B=C$.
(c) If $A-B=C-B$, then implies $A=C$.
4. [9 points] Describe the following sets by listing their elements.
(a) The set of all reminders when an even integer is divided by 4 .
(b) The set of all odd integers of absolute value less or equal than 7 .
5. [12 points] Describe the following sets by listing enough elements to indicate a pattern for all elements of the set.
(a) The set of all numbers x for which $\tan x$ is undefined.
(b) $A=\{3 q-2 \mid q \in \mathbb{Z}\}$
6. [20 points] Let $U=\{1,\{2\}, a, b, c\}$ be the universal set and let $A=\{a, b, 1,\{2\}\}, B=\{b, c\}$, $C=\{1,\{2\}, a, c\}$. Determine the following (show all intermediate steps):
(a) $\bar{A} \cup(B \cap C)$
(b) $\overline{B \cup C} \cap U$
(c) $\overline{(A \cup B)-(B \cap C)}$
(d) $(B \cap C) \times A$
7. 10pts Given $A=\{x \in \mathbb{Z}| | x \mid>10\}$. Compute the compliment of A, if
(a) $U=\mathbb{Z}$.
(b) $U=\mathbb{R}$.
8. [12 points] Let $U=\mathbb{R}$ be the universal set. Consider $A=\{x \in \mathbb{R}| | x-1 \mid \geq 4\}$ and $B=\left\{\left.x \in \mathbb{R}| | \frac{x}{2}-20 \right\rvert\,>1\right\}$.
(a) Express the sets A and B using interval notation (as an interval or a union of intervals).
(b) Determine $A \cap \bar{B}$ as an interval or a union of intervals.
9. [20 points] Assume that A, B and C are sets and P, Q and R are propositions. Characterize the following expressions as either
(i) a proposition/statement
(ii) not a proposition/statement, but an expression that makes sense mathematically.
(iii) an expression that makes no sense mathematically.
(Write i, ii, or iii as an answer for each item.)
(a) i/ii/iii $(A \cap C) \subset \bar{A}-C$
(b) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad R \cap Q$
(c) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} A+B-C$
(d) i/ ii $/ \mathrm{iii} \quad(\exists x \in P)[x \in A \cup B]$
(e) i / ii $/ \mathrm{iii} A \vee B \vee C$
(f) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad B \Rightarrow(A-C)$
(g) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad(A \subset B) \Rightarrow Q$
(h) \quad i $/ \mathrm{ii} / \mathrm{iii} \quad P \subseteq R \wedge Q$
(i) i/ii $/ \mathrm{iii} \quad P=Q \wedge R$
(j) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad B \cap A-C$

