Math 300 - Homework 8

Due Thursday 10/31 at the beginning of class

Total points: 141 (Writing portion: 45 pts (all the problems marked by *).)

PART A

Problems from the textbook:

- Section 4.3

problem	$1(\mathrm{a})$	$2(\mathrm{a})$	$4(\mathrm{a})$	$5(\mathrm{a})$
points	6	6	6	6

- Section 5.2 problem | | $1(\mathrm{a})$ | $1(\mathrm{~b})$ | 2 |
| :---: | :---: | :---: | :---: |
| | points | 8 | 10 | 10.

PART B

1. Let $A=\{x, y, z, u, v\}, B=\{a, b, c, d\}$, and $C=\{5,6,7,8,9\}$.
(a) [9 points] Write out three functions with domain A and codomain B making at least one of the functions have the property that its range coincides with its codomain (represent all functions by their graphs (see Definition 3 in notes)).
(b) [9 points] Write out two functions with domain B and codomain C (represent all functions by their graphs (see Definition 3 in notes)). Explain why you cannot define a function between these two sets for which the range equals its codomain.
2. Let $X=\{x \in \mathbb{R} \mid x \neq 7\}$ and $f: X \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{2 x+5}{7-x}$.
(a) [5 points] Determine the range of f.
(b) $*[10$ points $]$ Prove that your answer for $\operatorname{ran} f$ is correct.
3. * $[10$ points $]$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=5 x+2019$. Prove that $\operatorname{ran} f=\mathbb{R}$.
4. * [10 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=-x^{6}$ and $S=\{y \in \mathbb{R} \mid y \leq 0\}$. Prove that $\operatorname{ran} f=S$.
5. * [5 points] Let $f:[-1, \infty] \rightarrow \mathbb{R}$ be defined by $f(x)=\sqrt[10]{1+x}$ and $S=[0, \infty)$. Prove that $S \subseteq \operatorname{ran} f$.
6. Express each of the following functions as a composition $f=g \circ h$. Be sure to give appropriate sets A, B, and C such that $h: A \rightarrow B$ and $g: B \rightarrow C$. Note that neither g nor h should be an identity functions, but there may be many possible answers.
(a) [7 points] $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt[5]{e^{x^{5}}+5}$
(b) $\left[7\right.$ points] $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\ln \left(x^{4}+x^{2}+12\right)$
(c) $[7$ points] $f: \mathbb{Z} \rightarrow \mathbb{R}$ defined by $f(x)=\cos (1-\pi x)$
7. * [10 points] Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are defined by $f(x)=2 x^{2}-1$ and $g(x)=3 x+5$. Determine $(g \circ f)(1)$ and $(f \circ g)(1)$.
