Math 300 – Homework 8

Due Thursday 10/31 at the beginning of class

Total points: 141 (Writing portion: 45 pts (all the problems marked by *).)

PART A

Problems from the textbook:

•	Section 4.3	problem points	1(a) 6	2(a) 6	$\frac{4(a)}{6}$	$\begin{array}{c c} 5(a) \\ \hline 6 \end{array}$
•	Section 5.2	problem points	1(a) 8	1(b) 10	$\begin{array}{c} 2\\ 10 \end{array}$	

PART B

1. Let $A = \{x, y, z, u, v\}, B = \{a, b, c, d\}$, and $C = \{5, 6, 7, 8, 9\}$.

- (a) [9 points] Write out three functions with domain A and codomain B making at least one of the functions have the property that its range coincides with its codomain (represent all functions by their graphs (see Definition 3 in notes)).
- (b) [9 points] Write out two functions with domain B and codomain C(represent all functions by their graphs (see Definition 3 in notes)). Explain why you cannot define a function between these two sets for which the range equals its codomain.

2. Let
$$X = \{x \in \mathbb{R} | x \neq 7\}$$
 and $f : X \to \mathbb{R}$ be defined by $f(x) = \frac{2x+5}{7-x}$.

- (a) [5 points] Determine the range of f.
- (b) * [10 points] Prove that your answer for ran f is correct.
- 3. * [10 points] Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 5x + 2019. Prove that ran $f = \mathbb{R}$.
- 4. * [10 points] Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = -x^6$ and $S = \{y \in \mathbb{R} | y \leq 0\}$. Prove that $\operatorname{ran} f = S$.
- 5. * [5 points] Let $f : [-1,\infty] \to \mathbb{R}$ be defined by $f(x) = \sqrt[10]{1+x}$ and $S = [0,\infty)$. Prove that $S \subseteq \operatorname{ran} f$.
- 6. Express each of the following functions as a composition $f = g \circ h$. Be sure to give appropriate sets A, B, and C such that $h : A \to B$ and $g : B \to C$. Note that neither g nor h should be an identity functions, but there may be many possible answers.
 - (a) [7 points] $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sqrt[5]{e^{x^5} + 5}$
 - (b) [7 points] $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \ln(x^4 + x^2 + 12)$
 - (c) [7 points] $f : \mathbb{Z} \to \mathbb{R}$ defined by $f(x) = \cos(1 \pi x)$
- 7. * [10 points] Let $f, g : \mathbb{R} \to \mathbb{R}$ are defined by $f(x) = 2x^2 1$ and g(x) = 3x + 5. Determine $(g \circ f)(1)$ and $(f \circ g)(1)$.