5 FUNCTIONS

5.1 Definition and Basic Properties

DEFINITION 1. Let X and Y be nonempty sets. A function f from the set X to the set Y is a correspondence that assigns to each element x in the set X one and only one element y in the set Y, which is denoted by $f(x)$.

We call X the domain of f and Y the codomain of f.
If $x \in X$ and $y \in Y$ are such that $y=f(x)$, then y is called the value of f at x, or the image of x under f. We may also say that f maps x to y.

Using diagram

DEFINITION 2. Two functions f and g are equal if they have the same domain and the same codomain and if $f(x)=g(x)$ for all x in domain.

DEFINITION 3. The graph of $f: X \rightarrow Y$ is the set

$$
G_{f}=\{(x, y) \in X \times Y \mid y=f(x)\}
$$

- We can determine a function from its domain, codomain, and graph.
- We can describe a function by formula, by listing its values, or by words.

EXAMPLE 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}+3, g: \mathbb{R} \rightarrow[0, \infty)$ be defined by $g(x)=x^{2}+3$, and $h:\{-1,0,1\} \rightarrow \mathbb{R}$ be defined by $h(x)=x^{2}+3$.
(a) Determine whether $f=g$.
(b) Determine whether $f=h$.
(c) Find the graphs of f, g, and h.

EXAMPLE 5. Decide if the following diagrams define functions from A to B.
(a)

(b)

(c)

EXAMPLE 6. Let $X=\{2,4,6\}$ and $Y=\{a, b, c, d\}$. Let f be a function defined by $f(2)=b, f(4)=$ $a, f(6)=d$ and let g be a function from X to Y defined by its graph $G_{g}=\{(2, c),(4, c),(6, c)\}$ Find the following.
(a) The image of 2 under f.
(b) The image of 6 under g.
(c) The preimage of d under f.
(d) The preimage of c under g.
(e) The preimage of d under g.
(f) The codomain of g.
$(\mathrm{g}) G_{f}$

Range (or Image) of a Function

DEFINITION 7. Let $f: X \rightarrow Y$ be a function. The range of f (also called the image of f) is the set

$$
\{y \in Y \mid y=f(x) \text { for some } \quad x \in X\}
$$

We denote the range (or image) of the function f by $\operatorname{ran} f(\operatorname{or} \operatorname{Im} f)$.

EXAMPLE 8. Let $f: X \rightarrow Y$ be a function. Using symbols complete the following

- $\operatorname{ran} f \subseteq$ \qquad
- $\forall y \in Y, y \in \operatorname{ran} f \Leftrightarrow$ \qquad
- $y \notin \operatorname{ran} f \Leftrightarrow$ \qquad

EXAMPLE 9. $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=\cos x$. Find $\operatorname{ran} f$.

EXAMPLE 10. Let $f:\left[\frac{1}{3}, \infty\right) \rightarrow \mathbb{R}$ be defined by $f(x)=\sqrt{3 x-1}$ and $S=\{y \in \mathbb{R} \mid y \geq 0\}$. Prove that $\operatorname{ran} f=S$.

5.2 Composition of Functions

DEFINITION 11. Let A, B, and C be nonempty sets, and let $f: A \rightarrow B, g: B \rightarrow C$. We define a function

$$
g \circ f: A \rightarrow C
$$

called the composition of f and g, by

$$
(g \circ f)(a)=
$$

Using diagram

EXAMPLE 12. Let $A=\{1,2,3,4\}, B=\{a, b, c, d\}, C=\{r, s, t, u, v\}$ and define the functions $f: A \rightarrow$ $B, g: B \rightarrow C$ by their graphs:

$$
G_{f}=\{(1, b),(2, d),(3, a),(4, a)\}, \quad G_{g}=\{(a, u),(b, r),(c, r),(d, s)\} .
$$

Find $g \circ f$. What about $f \circ g$?

EXAMPLE 13. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=e^{x}$ and $g(x)=x \sin x$. Find $f \circ g$ and $g \circ f$.

PROPOSITION 14. Let $f: A \rightarrow B, g: B \rightarrow C$, and $h: C \rightarrow D$. Then

$$
(h \circ g) \circ f=h \circ(g \circ f),
$$

i.e. composition of functions is associative.

Proof.

Section 5.3 Surjective (or onto) and Injective (or one-to-one) Functions

Surjective functions ("onto")
DEFINITION 15. Let $f: X \rightarrow Y$ be a function. Then f is surjective (or a surjection) if the range of f coincides with its codomain, i.e.

$$
\operatorname{ran} f=Y
$$

Note: surjection is also called "onto".

Proving surjection:
We know that for all $f: X \rightarrow Y$: \qquad
Thus, to show that $f: X \rightarrow Y$ is a surjection it is sufficient to prove that \qquad
In other words,
to prove that $f: X \rightarrow Y$ is a surjective function it is sufficient to show that \qquad

Question: How to disprove surjectivity?

EXAMPLE 16. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow[0, \infty)$ defined by $f(x)=g(x)=x^{4}$. Determine whether the following are true
(a) $\operatorname{ran} f=\operatorname{ran} g$
(b) $f=g$
(c) f is surjective
(d) g is surjective

EXAMPLE 17. Prove that the function $f: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{3\}$ defined by $f(x)=\frac{3 x}{x-2}$ is surjective.

Injective functions ("one to one")

DEFINITION 18. Let $f: X \rightarrow Y$ be a function. Then f is injective (or an injection) if whenever $x_{1}, x_{2} \in X$ and $x_{1} \neq x_{2}$, we have $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

In other words, f is injective if and only if the ranges of every two distinct points in the domain of f are distinct.

EXAMPLE 19. Given $X=\{1,2,3\}$ and $Y=\{3,4,5\}$. Determine whether the following functions are injective. Justify your answer.
(a) $f: X \rightarrow Y$ defined by $G_{f}=\{(1,3),(2,4),(3,5)\}$
(b) $g: X \rightarrow Y$ defined by $G_{g}=\{(1,5),(2,4),(3,4)\}$

Proving injection:
Let $P\left(x_{1}, x_{2}\right): x_{1} \neq x_{2}$ and $Q\left(x_{1}, x_{2}\right): f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Then by definition f is injective if \qquad .

Using contrapositive, we have \qquad .
In other words, to prove injection show that:

Question: How to disprove injectivity?

EXAMPLE 20. Prove or disprove injectivity of the following functions.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\sqrt[5]{x}$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{4}$.
(c) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(n)=\left\{\begin{array}{cll}n / 2 & \text { if } & n \in \mathbb{E}, \\ 2 n & \text { if } & n \in \mathbb{O} .\end{array}\right.$
(d) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(n)=\left\{\begin{array}{cll}n & \text { if } & n \in \mathbb{E}, \\ 5 n & \text { if } & n \in \mathbb{O} \text {. }\end{array}\right.$

Discussion Exercise.

- Must a strictly increasing or decreasing function be injective?
- Must an injective function be strictly increasing or decreasing?

EXAMPLE 21. Prove or disprove injectivity of the following functions. In each case, $f: \mathbb{R} \rightarrow \mathbb{R}$.
(a) $f(x)=3 x^{5}+5 x^{3}+2 x+\pi$.
(b) $f(x)=x^{12}+x^{8}-x^{4}+12$.

Bijective functions

DEFINITION 22. A function that is both surjective and injective is called bijective (or bijection.)
f is not bijective \Leftrightarrow \qquad

Bijection (One-to-One and Onto)

PROPOSITION 23. A function f is bijective if and only if every point in codom f has a unique preimage in the $\operatorname{dom} f$.

EXAMPLE 24. Determine which of the following functions are bijective.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$.

PROPOSITION 25. Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Then
i. If f and g are surjections, then $g \circ f$ is also a surjection.

Proof.
ii. If f and g are injections, then $g \circ f$ is also an injection.

Proof.

COROLLARY 26. If f and g are bijections, then $g \circ f$ is also a bijection.

Identity Function

For a set X we define the identity function $I_{X}: X \rightarrow X$ by the rule $I_{X}(x)=x$ for all $x \in X$. In other words, the identity function maps every element to itself.

Though this seems like a rather trivial concept, it is useful and important.

PROPOSITION 27. Let $f: X \rightarrow Y$. Then $f \circ I_{X}=f$ and $I_{Y} \circ f=f$.

5.4 Invertible Functions

Inverse Functions

DEFINITION 28. Let $f: X \rightarrow Y$ be a function. We say that f is invertible if there is a function $g: Y \rightarrow X$ such that for all $x \in X$ and for all $y \in Y$,

$$
y=f(x) \quad \Leftrightarrow \quad x=g(y)
$$

We say that such a function g is an inverse function of f.
Question 1 What is the inverse of g ?
Question 2 Are the functions in Example 6 invertible?
REMARK 29. f is invertible if and only if its inverse is invertible.
EXAMPLE 30. Show that the function $f: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{3\}$ defined by $f(x)=\frac{3 x}{x-2}$ is invertible and find its inverse function. (Note that the given function is bijective.)

PROPOSITION 31. A function $f: X \rightarrow Y$ is invertible if and only if there exists a function $g: Y \rightarrow X$ such that

$$
g \circ f=I_{X} \quad \text { and } \quad f \circ g=I_{Y}
$$

PROPOSITION 32. The inverse function is unique.
Proof.

Notation

When $f: X \rightarrow Y$ is invertible, the unique inverse function is denoted by f^{-1}, and $f^{-1}: Y \rightarrow X$.

REMARK 33. Finding the inverse of a bijective function is not always possible by algebraic manipulations. For example,
if $f(x)=e^{x}$ then $f^{-1}(x)=$ \qquad
The function $f(x)=3 x^{5}+5 x^{3}+2 x+220$ is known to be bijective, but there is no way to find expression for its inverse.

THEOREM 34. A function $f: X \rightarrow Y$ is invertible if and only if f is bijective.

COROLLARY 35. If a function $f: X \rightarrow Y$ is bijective, so is f^{-1}.

