16: Mechanical and Electrical Vibrations (section 3.7)

Consider linear dynamical system in which mathematical model is the following IVP:

$$
a u^{\prime \prime}+b u^{\prime}+c u=g(t), \quad u(0)=u_{0}, \quad u^{\prime}(0)=v_{0} .
$$

Here $g(t)$ is forcing function of the system. A solution $u(t)$ of the DE on an interval containing $t=0$ that satisfies the initial conditions is called the response of the system.

Spring/mass systems: Free Undamped Vibration (or simple harmonic motion)

1. A flexible spring is suspended vertically from a rigid support and the mass m is attached to the end. By Hooke's Law, the spring itself exerts a restoring force F opposite to the direction of elongation and proportional to the amount of elongation $L: \quad F=-k L$, where k is called the spring constant.
2. The mass m stretches the spring by L and attains a position of equilibrium, i.e. weight, $m g$, is balanced by the restoring force:

$$
m g-k L=0
$$

3. If the mass is displaced by an amount u from its equilibrium position, the restoring force is then $-k(u+L)$.
Free motion (i.e. no other external/retarding forces acting on the moving mass): use Newton's second Law with the net (or resultant) force:

$$
m u^{\prime \prime}=-k(u+L)+m g=-k u .
$$

4. DE of Free Undamped Motion:

$$
\begin{equation*}
u^{\prime \prime}+\omega_{0}^{2} u=0 \tag{1}
\end{equation*}
$$

where

$$
\omega_{0}^{2}=\frac{k}{m}
$$

Initial conditions: $u(0)=u_{0}, \quad u^{\prime}(0)=v_{0}$, where u_{0} is the initial displacement and v_{0} is the initial velocity. For example, $u_{0}<0$ and $u_{1}=0$ mean that the mass is released from rest from a point $\left|u_{0}\right|$ units above the equilibrium position.
General solution of (1) is

$$
u(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)=R \cos \left(\omega_{0} t-\delta\right)
$$

where

- $R=\sqrt{C_{1}^{2}+C_{2}^{2}}$ is called the amplitude of the motion
- δ is called the phase, or phase angle, and measures the displacement of the wave from its normal position corresponding to $\delta=0$. Recall that

$$
\cos \delta=\frac{C_{1}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}=\frac{C_{1}}{R}, \quad \sin \delta=\frac{C_{2}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}=\frac{C_{2}}{R} .
$$

- $T=\frac{2 \pi}{\omega_{0}}$ is the period of the motion. The number T is time it takes the mass to execute one cycle of motion (the length of the interval between two successive maxima (or minima) of $u(t)$.)
- $\omega_{0}=\sqrt{\frac{k}{m}}$ is the natural frequency of the system.
- The frequency of motion $f=\frac{1}{T}=\frac{\omega_{0}}{2 \pi}$.

5. A mass weighing 4lb stretches a spring 6 inches. At $t=0$ the mass released from a point 8 inches below the equilibrium with an upward velocity of $2 / 3 \mathrm{ft} / \mathrm{s}$. Determine the amplitude of vibrations, phase angle, period, natural frequency of the system and frequency of motion.

Spring/mass systems: Free Damped Vibrations.

6. Assume that the mass is suspended in a viscous medium or connected to a dashpot damping device. Dampers work to counteract any movement: damping force $=-\gamma v=-\gamma u^{\prime}$, where γ is a positive damping constant.
7. DE of Free Damped Motion:

$$
\begin{equation*}
m u^{\prime \prime}+\gamma u^{\prime}+k u=0 . \tag{2}
\end{equation*}
$$

8. Discriminant of the characteristic equation $m r^{2}+\gamma r+k=0$ is

$$
D=\gamma^{2}-4 m k .
$$

CASE 1: (Underdamping) $D<0$, i.e. the roots are complex conjugate:

$$
r_{1,2}=-\frac{\gamma}{2 m} \pm i \sqrt{\omega_{0}^{2}-\frac{\gamma^{2}}{4 m^{2}}}=: \lambda+i \mu
$$

General solution of (2) is not periodic:

$$
u(t)=C_{1} e^{-\lambda t} \cos (\mu t)+C_{2} e^{-\lambda t} \sin (\mu t)=R e^{-\lambda t} \cos (\mu t-\delta),
$$

where

- $R e^{-\lambda t}$ is damped amplitude of vibrations
- $\mu=\sqrt{\omega_{0}^{2}-\frac{\gamma^{2}}{4 m^{2}}}=\sqrt{\omega_{0}^{2}-\lambda^{2}}$ is the quasi frequency
- $T_{d}=\frac{2 \pi}{\mu}=\frac{2 \pi}{\sqrt{\omega_{0}^{2}-\lambda^{2}}}$ is the quasi period, i.e. the time interval between two successive maxima of $u(t)$.
Note that as γ increases, the quasi frequency μ becomes smaller and the quasi period becomes bigger.
CASE 2: (Critical Damping) $D=0$ (two repeated (equal) roots) In this case any slight decrease of the damping force would result in oscilatory motion. The general solution of (2) is

$$
x(t)=C_{1} e^{\lambda t}+C_{2} t e^{\lambda t}=e^{-\lambda t}\left(C_{1}+C_{2} t\right)
$$

CASE 3: (Overdamping) $D>0$ (two distinct real roots)In this case there are no oscillation. The general solution of (2) has no more one zero:

$$
x(t)=e^{\lambda t}\left(C_{1} e^{\sqrt{\lambda^{2}-\omega_{0}^{2}} t}+C_{2} e^{-\sqrt{\lambda^{2}-\omega_{0}^{2}} t}\right) .
$$

LRC electrical circuit

9. If Q is the charge at time t in an electrical closed circuit with inductance L, resistance R, and capacitance C, then by Kirchhoff's Second Law (from Physics) the impressed voltage $E(t)$ is equal to the sum of the voltage drops in the rest of the circuit

$$
E(t)=I R+\frac{Q}{C}+L I^{\prime}(t)
$$

By substitution $I=Q^{\prime}$ we get

$$
L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)
$$

Analogy between electrical and mechanical quantities:

Charge Q	Position u
Inductance L	mass m
Resistance R	Damping constant γ
Inverse capacitance $1 / C$	Spring constant k
Impressed voltage $E(t)$ (electromotive force)	External force $F(t)$

