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18: Definition of the Laplace Transform(section 6.1)

1. Remind the Improper Integral (type I):

∫ ∞

0

φ(t)dt = lim
A→∞

∫ A

0

φ(t)dt

2. DEFINITION of LAPLACE TRANSFORM Let f(t) be a function defined for t ≥ 0. Then the

integral

L{f(t)} =

∫ ∞

0

e−stf(t)dt (1)

is said to be the Laplace Transform of f , provided that the integral converges. Note that

when the integral (1) converges the result is a function of s.

Below we use a lowercase letter to denote the function being transformed and

the corresponding capital letter to denote its Laplace Transform:

L{f(t)} = F (s), L{g(t)} = G(s), L{y(t)} = Y (s), etc.

3. Example:Apply the above definition to evaluate Laplace Transform of the following functions:

(a) f(t) = 1

(b) f(t) = e5t

4. L is a Linear Transform:

L{αf + βg} = αL{f}+ βL{g} .

5. How Laplace Transform might be useful in solving DE? Key property: Under some natural

conditions on a function f we have transform of a derivative

L{f ′(t)} = sL{f(t)} − f(0).

Illustration: We already know that y(t) = 10e−5t is solution of the IVP:

y′ + 5y = 0, y(0) = 10.

Now solve it using Laplace Transform.

6. Example:Evaluate Laplace Transform of the following functions:

(a) f(t) = sin(4t)

(b) f(t) = cos(at)
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7. Transforms of some basic functions1

L{1} =
1

s

L{tn} =
n!

sn+1
, n = 1, 2, 3, . . .

L
{
eat
}

=
1

s− a
L{sin at} =

a

s2 + a2

L{cos at} =
s

s2 + a2

8. Translation in s property:

L
{
eαtf(t)

}
= F (s− α)

9. EXAMPLE Evaluate

(a) L{eαt sin βt}
(b) L{eαt cos βt}

10. Laplace transform of the derivative: Under some natural conditions on a function f

L{f ′(t)} = sL{f(t)} − f(0)

More generally,

L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0)

L
{
f (n)(t)

}
= snL{f} − sn−1f(0)− sn−2f ′(0)− . . .− sf (n−2)(0)− f (n−1)(0)

11. EXAMPLE Solve for Y (s), the Laplace transform of the solution y(t) to the given initial

value problem:

y′′ − 2y′ + 5y = −8e−t, y(0) = 2, y′(0) = 12.

12. Derivative of Laplace transform:

L{tnf(t)} = (−1)nF (n)(s).

13. EXAMPLE Evaluate L{tneαt}

19: Solution of Initial Value Problems (sec. 6.2)

1. INVERSE LAPLACE TRANSFORMS: If F (s) represents the Laplace Transform of f(t), i.e.

L{f(t)} = F (s), then we say that f(t) is the inverse Laplace Transform of F (s) and

write

f(t) = L−1 {F (s)} .

1s is sufficiently restricted to guarantee the convergence of the appropriate Laplace Transform.
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2. Some Inverse Transforms:

Transform

L{1} =
1

s

L{tn} =
n!

sn+1
, n = 1, 2, 3, . . .

L
{
eat
}

=
1

s− a

L{sin at} =
a

s2 + a2

L{cos at} =
s

s2 + a2

L
{
tneαt

}
=

n!

(s− α)n+1

Inverse Transform

L−1
{

1

s

}
= 1

L−1
{

1

sn

}
=

tn−1

(n− 1)!
, n = 1, 2, 3, . . .

L−1
{

1

s− a

}
= eat

L−1
{

a

s2 + a2

}
= sin at

L−1
{

s

s2 + a2

}
= cos at

L−1
{

1

(s− α)n

}
=

tn−1eαt

(n− 1)!

See Table on the page 317 in the Textbook (or Appendix 2) for more cases.

3. L−1 is a Linear Transform:

L−1 {αf + βg} = αL−1 {f}+ βL−1 {g} .

4. Note that it often happens that a function of s under consideration does not match exactly

the form of a Laplace Transform F (s) in the table. In this cases you need to “fix up” the

function of s. Helpful strategies:

• multiply/divide by an appropriate constant

• use termwise division

• use Partial Fractions (See Appendix 1: Inverse Laplace transform of rational functions

using Partial Fraction Decomposition)

5. Example. Evaluate

(a) L−1
{

2s+ 3

s2 + 5s+ 6

}

(b) L−1
{

2s2 − 3s+ 5

(s− 3)2(s+ 4)

}

(c) L−1
{

3s+ 5

s2 + 6s+ 34

}
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6. Consider the n-th order ODE

any
(n) + an−1y

(n−1) + a1y
′ + a0y = g(t)

subject to

y(0) = α0, y
′(0) = α1, . . . y

(n−1) = αn−1.

Note that in the case n = 2 know how to solve this IVP using the Method Variation

of Parameters and the Method of Undetermined Coefficients (for g(t) = Pn(t)eαt cos bt or

g(t) = Pn(t)eαt sin bt) 2

7. How to solve the given IVP using Laplace Transform:

Step 1. Apply Laplace Transform to both sides of the given ODE. Use linearity and other

Laplace Transform properties together with the initial conditions to we obtain an al-

gebraic equation in the s-domain for Y (s) = L{y(t)} instead of the given ODE in the

t-domain.

Step 2. Solve for Y (s) the algebraic equation obtained in Step 1.

Step 3. Find the inverse Laplace Transform of Y (s) to get y(t).

8. EXAMPLE Solve IVP

y′′ − 2y′ + 5y = −8e−t, y(0) = 2, y′(0) = 12.

Note that we already found that

Y (s) =
2s2 + 10s

(s+ 1)(s2 − 2s+ 5)
.

9. EXAMPLE Consider the IVP

y′′ + 4y′ − 5y = tet, y(0) = 1, y′(0) = 0. (2)

SOLUTION (Main Steps): Application of Laplace Transform yields:

Y (s) =
s3 + 2s2 − 7s+ 5

(s− 1)2(s2 + 4s− 5)
=
s3 + 2s2 − 7s+ 5

(s− 1)3(s+ 5)
(3)

Partial Fraction Decomposition:

s3 + 2s2 − 7s+ 5

(s− 1)2(s2 + 4s− 5)
=

A

s− 1
+

B

(s− 1)2
+

C

(s− 1)3
+

D

s+ 5
, (4)

where

A =
181

216
, B = − 1

36
, C =

1

6
, D =

35

216
.

Find the inverse Laplace Transform of Y (S) (use Table (see Appendix 2)):

y(t) = L−1 {Y (s)} =
181

216
et − 1

36
tet +

1

12
t2et +

35

216
e−5t. (5)

QUESTION: What is the general form of the solution of DE (2) by Method of Undetermined

Coefficients?

2These methods can be straightforward generalized for any n.
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Appendix 1.

Inverse Laplace transform of rational functions using
Partial Fraction Decomposition

Using the Laplace transform for solving linear non-homogeneous
differential equation with constant coefficients and the right-hand
side g(t) of the form h(t)eαt cosβt or h(t)eαt sinβt, where h(t) is
a polynomial, one needs on certain step to find the inverse Laplace

transform of rational functions
P(s)

Q(s)
, where P(s) and Q(s) are

polynomials with degP(s) < degQ(s).
The latter can be done by means of the partial fraction
decomposition that you studied in Calculus 2:
One factors the denominator Q(s) as much as possible, i.e. into
linear (may be repeated) and quadratic (may be repeated) factors:
each linear factor correspond to a real root of Q(s) and
each quadratic factor correspond to a pair of complex conjugate
roots of Q(s).

Each factor in the decomposition of Q(s) gives a contribution of

certain type to the partial fraction decomposition of
P(s)

Q(s)
. Below

we list these contributions depending on the type of the factor and
identify the inverse Laplace transform of these contributions:

Case 1 A non-repeated linear factor (s − a) of Q(s) (corresponding to
the root a of Q(s) of multiplicity 1) gives a contribution of

the form
A

s − a
. Then L−1

{
A

s − a

}
= Aeat ;

Case 2 A repeated linear factor (s − a)m of Q(s) (corresponding to
the root a of Q(s) of multiplicity m) gives a contribution

which is a sum of terms of the form
Ai

(s − a)i
, 1 ≤ i ≤ m.

Then L−1

{
Ai

(s − a)i

}
=

Ai

(i − 1)!
t i−1eat ;
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Case 3 A non-repeated quadratic factor (s − α)2 + β2 of Q(s)
(corresponding to the pair of complex conjugate roots α± iβ
of multiplicity 1) gives a contribution of the form

Cs + D

(s − α)2 + β2
.

It is more convenient here to represent it in the following way:
Cs + D

(s − α)2 + β2
=

A(s − α) + Bβ

(s − α)2 + β2
. Then

L−1

{
A(s − α) + Bβ

(s − α)2 + β2

}
= Aeαt cosβt + Beαt sinβt;

Case 4 A repeated quadratic factor
(
(s − α)2 + β2

)m
of Q(s)

(corresponding to the pair of complex conjugate roots α± iβ
of multiplicity m) gives a contribution which is a sum of terms
of the form

Ci s + Di(
(s − α)2 + β2

)i =
Ai (s − α) + Biβ(
(s − α)2 + β2

)i ,

where 1 ≤ i ≤ m.

The calculation of the inverse Laplace transform in this case is
more involved. It can be done as a combination of the
property of the derivative of Laplace transform and the notion
of convolution that will be discussed in section 6.6.
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Appendix 2.

(from the textbook, page 317)


