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18: Definition of the Laplace Transform(section 6.1)

1. Remind the Improper Integral (type I):

/0 T o(t)dt = lim /O ! o(t)dt

A—o0

2. DEFINITION of LAPLACE TRANSFORM Let f(t) be a function defined for ¢ > 0. Then the

integral i,
C{f(t)} = / e F()dt (1)

is said to be the Laplace Transform of f, provided that the integral converges. Note that

when the integral (1) converges the result is a function of s.

Below we use a lowercase letter to denote the function being transformed and

the corresponding capital letter to denote its Laplace Transform:
LA} =F(s), L{gt)} =G(s), L{y(t)} =Y (s),ete.
3. Example: Apply the above definition to evaluate Laplace Transform of the following functions:

(a) f(t) =1

4. L is a Linear Transform:

L{af+ By} = aL{f}+BL{g}.

5. How Laplace Transform might be useful in solving DE? Key property: Under some natural

conditions on a function f we have transform of a derivative
LS @)} =sLLf@)} = £(0).
lllustration: We already know that y(¢) = 10e~"" is solution of the IVP:

v +5y =0, y(0)=10.



(©Dr Oksana Shatalov, Summer 2014

Now solve it using Laplace Transform.

6. Example: Fvaluate Laplace Transform of the following functions:

(a) f(t) = sin(4)

(b) f(t) = cos(at)

7. Transforms of some basic functions'

1 1
E 1} = - E atl _
L} s {e"} P
E{sinat}—L
2+ a?
n n! . N
E{t}zsn-i-l’ n:1,2,3,... {cosa}_m

s is sufficiently restricted to guarantee the convergence of the appropriate Laplace Transform.
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8. Translation in s property:

L{e"f(t)} =F(s—a)
9. EXAMPLE FEuvaluate

(a) L£{e*sin St}

(b) L {e* cosft}

10. Laplace transform of the derivative: Under some natural conditions on a function f

L)} =sL{f@®)} = f(0)
More generally,
L{f"()} = s*L{f(t)} —s£(0) — f(0)
L{FM@)} = s"L{f} = "7 F(0) = s"2f(0) — ... = sf"72(0) = F"71(0)
11. EXAMPLE Solve for Y (s), the Laplace transform of the solution y(t) to the given initial

value problem:
y' =2y +5y =8, y(0)=2, y'(0)=12
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12. Derivative of Laplace transform:

L f(t)} = (=1)"F™(s).

13. EXAMPLE  Evaluate L {t"e*'}

19: Solution of Initial Value Problems (sec. 6.2)

1. INVERSE LAPLACE TRANSFORMS: If F(s) represents the Laplace Transform of f(t), i.e.
LA{f(t)} = F(s), then we say that f(¢) is the inverse Laplace Transform of F(s) and

write

2. Some Inverse Transforms:

Transform

Eﬂ}:é

n!
Sn—l—l )

Lty =

1

sS—a

E{e“t} =

. a
E {sm at} = m
S

E {COS at} = m

n o n!
E{tet}:m

n=123,...

f(t) =L {F(s)}.

Inverse Transform

See Table on the page 317 in the Textbook (or Appendix 2) for more cases.

3. L 'is a Linear Transform:

L7Haf +Bgt =al  {f}+ 8L {g}.

4. Note that it often happens that a function of s under consideration does not match exactly

the form of a Laplace Transform F(s) in the table. In this cases you need to “fix up” the

function of s. Helpful strategies:
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e multiply/divide by an appropriate constant
e use termwise division
e use Partial Fractions (See Appendix 1: Inverse Laplace transform of rational functions

using Partial Fraction Decomposition)

5. Example. FEvaluate

25+ 3
—1 e
(8) £ {32+53+6}

e s . )
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35 +5
—1 e
(c) £ {32+63+34}

6. Consider the n-th order ODE
any™ + an_1y™ Y 4+ a1y + agy = g(t)

subject to

y(0) = ag,y'(0) = ay, .. .y("_l) = 1.

Note that in the case n = 2 know how to solve this IVP using the Method Variation
of Parameters and the Method of Undetermined Coefficients (for g(t) = P,(t)e™ cos bt or
g(t) = P,(t)e* sinbt) ?

7. How to solve the given IVP using Laplace Transform:

Step 1. Apply Laplace Transform to both sides of the given ODE. Use linearity and other
Laplace Transform properties together with the initial conditions to we obtain an al-
gebraic equation in the s-domain for Y(s) = L{y(¢)} instead of the given ODE in the

t-domain.
Step 2. Solve for Y(s) the algebraic equation obtained in Step 1.
Step 3. Find the inverse Laplace Transform of Y'(s) to get y(¢).

2These methods can be straightforward generalized for any n.
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8. EXAMPLE Solve IVP
y' =2y +5y=-8"" y(0)=2, ¢(0)=12.

Note that we already found that

252 4+ 10s

YO = i s 1o
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9. EXAMPLE Consider the IVP
y' +4y —by=te', y0)=1, 4 (0)=0. (2)
SOLUTION (Main Steps): Application of Laplace Transform yields:

¥(s) s34+2s2 —Ts+5 s3+2s2 —T7s+5 )
S) = g
(s —1)%(s®> +4s —5) (s —1)3(s+5)

Partial Fraction Decomposition:

s +22—-T7s+5 A N B N C N D )
(s —1)2(s2+45—-5) s—1 (s—1)2 (s—1)3 s+5
where 181 | 1 35
216’ 36’ ¢ 6’ 216

Find the inverse Laplace Transform of Y (S) (use Table (see Appendix 2)):

181, 1., 1.,, 35
SOt et g2t o 22 5
516¢ 36 T12' ¢ T or6° (5)

QUESTION: What is the general form of the solution of DE (2) by Method of Undetermined
Coeflicients?

y(t) = L7{Y ()}



(©Dr Oksana Shatalov, Summer 2014

Appendix 1.

Inverse Laplace transform of rational functions using

Partial Fraction Decomposition

Using the Laplace transform for solving linear non-homogeneous
differential equation with constant coefficients and the right-hand
side g(t) of the form h(t)e®" cos 3t or h(t)e™'sin 3t, where h(t) is
a polynomial, one needs on certain step to find the inverse Laplace

transform of rational functions Tg where P(s) and Q(s) are
polynomials with deg P(s) < deg Q(s).

The latter can be done by means of the partial fraction
decomposition that you studied in Calculus 2:

One factors the denominator Q(s) as much as possible, i.e. into
linear (may be repeated) and quadratic (may be repeated) factors:
each linear factor correspond to a real root of Q(s) and

each quadratic factor correspond to a pair of complex conjugate
roots of Q(s).

Each factor in the decomposition of Q(s) gives a contribution of

s
certain type to the partial fraction decomposition of m Below
s

we list these contributions depending on the type of the factor and
identify the inverse Laplace transform of these contributions:

Case 1 A non-repeated linear factor (s — a) of Q(s) (corresponding to
the root a of Q(s) of multiplicity 1) gives a contribution of

A A
the form ———. Then £71 = Aedt:
s—a s—a

Case 2 A repeated linear factor (s — a)™ of Q(s) (corresponding to
the root a of Q(s) of multiplicity m) gives a contribution

which is a sum of terms of the form : = 1<i<m.

(s —a)

A; A; .
Then £71 b = ti—leat,
(s —a) (i—1)!
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Case 3 A non-repeated quadratic factor (s — a)? + 32 of Q(s)
(corresponding to the pair of complex conjugate roots o & i3
of multiplicity 1) gives a contribution of the form

Cs+D

(s — )2+ B%

It is more convenient here to represent it in the following way:
Cs+ D A(s —a)+ Bp

ol @ (s—aptp '

1 A(S—Oé)—l—Bﬁ
. {(s—a?+ﬁ2

} = Ae®t cos St + Be*sin t;

Case 4 A repeated quadratic factor ((s — a)? + 3%)" of Q(s)
(corresponding to the pair of complex conjugate roots o + i3

of multiplicity m) gives a contribution which is a sum of terms
of the form

Cis+ D; _ A,'(S — Oé) + B;j
(s—a)2+8)  ((s—a)2+p?)"

where 1 </ < m.

The calculation of the inverse Laplace transform in this case is
more involved. It can be done as a combination of the
property of the derivative of Laplace transform and the notion
of convolution that will be discussed in section 6.6.

10
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Appendix 2.

(from the textbook, page 317)

TABLE 6.2,1 Elementary Laplace Transforms

11

fy=LHFE)

F(s)y=L{f®}

10.

11

12.

13.

14,

15.

16.

17.

18.

19.

e&‘!
t%  n = positive integer
P, p>-1

sinaft

cosat

sinh af

coshar

. ¢ sin bt

e% cos bt

"™, .n = positive integer

uc(z)
u(Dftt=c)
e“f(r)

flen

j{;f(f—-t)g(f) dr
(t—¢)
f(ﬁ)(!) -

=0"f®

1
e S >0
5
1
s 5>a
5—a
!
i, s>0
5:1-@-»1
'gp+1) 0
gp+t 7 ’
a
32 +€22’ s>0
s
SR s>0
a
P - 2 5> |al
s
sZ_g s > |a]
b $>4a
(s —a)?+b*
i s>a
(s—a)?+ b
n!
(S-g)ﬁ-}l’ s$>a
£ » s>0
5
e CF(s)
F(s—0)
1
EFG)’ c>0
FG(s)
e
STE(s) — sTH(0) — - - — £
F(lz)(s)




