27: Complex Eigenvalues (section 7.6)

1. When the characteristic equation has real coefficients, complex eigenvalues always appear in conjugate pairs.
2. Case $n=2$. If $\lambda=\alpha+i \beta$ is a complex eigenvalue of the coefficient matrix A in the homogeneous system $X^{\prime}=A X$ and v is a corresponding eigenvector then

$$
\left\{e^{\lambda t} v, e^{\bar{\lambda} t} \bar{v}\right\}
$$

is a fundamental set of solutions of the system $X^{\prime}=A X$.
-

$$
\left\{\operatorname{Re}\left(e^{\lambda t} v\right), \operatorname{Im}\left(e^{\lambda t} v\right)\right\}
$$

is a real fundamental set of solutions of the system $X^{\prime}=A X$.
3. Example. Consider $\left(\begin{array}{cc}3 & 1 \\ -5 & 1\end{array}\right)$
(a) Find general solution of the system $X^{\prime}=A X$.
(b) Find general real solution of the system $X^{\prime}=A X$.
(c) Find solution subject to the initial conditions $x_{1}(0)=2, x_{2}(0)=3$.
4. If $\lambda=\alpha+i \beta$ is a complex eigenvalue of a real matrix A and $v=a+i b$ is a corresponding eigenvector, then

$$
\operatorname{Re}\left(e^{\lambda t} v\right)=e^{\alpha t}(a \cos (\beta t)-b \sin (\beta t)), \quad \operatorname{Im}\left(e^{\lambda t} v\right)=e^{\alpha t}(a \sin (\beta t)+b \cos (\beta t))
$$

5. Case $n=3$. If $\alpha \pm i \beta$ are complex eigenvalue of the coefficient matrix A, then the third eigenvalue must be real (denote it by λ). Let v and w be eigenvectors corresponding to $\alpha+i \beta$ and λ, respectively. Then

$$
\left\{\operatorname{Re}\left(e^{\lambda t} v\right), \operatorname{Im}\left(e^{\lambda t} v\right), e^{\lambda t} w\right\}
$$

is a real fundamental set of solutions of the system $X^{\prime}=A X$.

