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29: The Phase Plane: Linear Systems (section 9.1)

1. We consider here a non-singular 2 × 2 matrix A (detA 6= 0). In this case AX = 0 implies

X = 0. Points where AX = correspond to the equilibrium (constant) solutions of system

X ′ = AX, and they are called critical points. It follows that X = 0 is the only critical point

of the system system X ′ = AX.

2. Solution of system X ′ = AX are combinations of eigenvectors v1, v2 with coefficients de-

pending on the parameter t. This solution is also a vector functions of t. Such functions

can be viewed as a parametric representation for a curve in the x1x2-plane. We regard to

this curve as the path, or trajectory, traversed by a moving particle whose velocity X ′(t)

is specified by the differential equation. The plane x1x2 itself is called the phase plane,

and a representative set of trajectories is referred to as a phase portrait.

Case 1. Real Distinct Eigenvalues

3. General solution (λ1, λ2 are eigenvalues and v1, v2 are corresponding eigenvectors):

X(t) = C1e
λ1tv1 + C2e

λ2tv2. (1)

Coordinates of X(t) in the basis {v1, v2} are

(C1e
λ1t, C2e

λ2t) =: (ξ1(t), ξ2(t)).

Eliminating the parameter t, one get

ξ2 = Cξ
λ2/λ1.
1

Case 1a: Real Distinct Eigenvalues of the Same Sign

4. Example. Sketch several trajectories in the phase plane for the system

x′1 = −2x1 + x2

x′2 = 2x1 − 3x2
(2)

Previously we obtained1

λ1 = −4, λ2 = −1, v1 =

(
−1

2

)
, v2 =

(
1

1

)
.

1see set 26(#3) of notes
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5. Sketch several trajectories in the phase plane when both eigenvalues are positive.

Case 1b: Real Eigenvalues of the Opposite Sign

6. Example. Sketch several trajectories in the phase plane for the system{
x′1 = x1 + 2x2

x′2 = 4x1 + 3x2
(3)

Previously we obtained2

λ1 = −1, λ2 = 5, v1 =

(
1

2

)
, v2 =

(
1

−1

)
.

2see Homework 13 (#1, Spring 2013)
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Case 2: Complex Eigenvalues

7. General solution (λ = α + iβ is a complex eigenvalue and v = a + ib is a corresponding

eigenvector):

X(t) = C1Re(eλtv) +C2Im(eλtv) = C1e
αt(a cos(βt)− b sin(βt)) +C2e

αt(a sin(βt) + b cos(βt)).
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8. Sketch several trajectories in the phase plane in the case α = 0 (i.e. λ is pure imaginary).

9. Sketch several trajectories in the phase plane in the case α < 0.

10. Sketch several trajectories in the phase plane in the case α > 0

Case 3: Repeated Eigenvalues

Case 3a: There is Basis of Eigenvectors

11. General solution (λ is eigenvalue and v1, v2 are corresponding eigenvectors):

X(t) = C1e
λtv1 + C2e

λtv2.

Coordinates of X(t) in the basis {v1, v2} are

(C1e
λt, C2e

λt) =: (ξ1(t), ξ2(t)).
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Eliminating the parameter t, one get

ξ2 =
C2

C1

ξ1.

12. Sketch several trajectories in the phase plane in this case.

Case 3b: There is NO Basis of Eigenvectors

13. General solution (λ is eigenvalue of multiplicity 2, v is a corresponding eigenvector, and w

is a generalized eigenvector):

X(t) = C1e
λtv + C2(te

λtv + eλtw)

14. Example. Sketch several trajectories in the phase plane for the system

x′1 = −3x1 + 5
2
x2

x′2 = −5
2
x1 + 2x2

Previously we obtained3

λ = −1

2
, v =

(
1

1

)
, w =

(
0

2/5

)
.

3see set 28(#10) of notes
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Summary

15. Stability properties of linear systems X ′ = AX with det(A− λI) = 0 and detA 6= 0.

Eigenvalues, λ Type of Critical Point Stability

λ1 > λ2 > 0 Proper node Unstable

λ1 < λ2 < 0 Proper node Asymptotically stable

λ2 < 0 < λ1 Saddle point Unstable

λ1,2 = α± iβ, α > 0 Spiral source Unstable

λ1,2 = α± iβ, α < 0 Spiral sink Asymptotically stable

λ1,2 = α± iβ, α = 0 Center Stable

λ1 = λ2 > 0 Proper or Improper node Unstable

λ1 = λ2 < 0 Proper or Improper node Asymptotically stable


