Worksheet: Complex Numbers

- 1. Solve $r^2 + 16 = 0$
- 2. Solve $r^2 + 2r + 3 = 0$.
- 3. Given z = 12 5i. Find
 - (a) real part of z
 - (b) imaginary part of z
 - (c) modulus of z
- 4. Find the distance between z = 1 i and z = 2i.
- 5. Given $z_1 = 4 i$, $z_2 = -5 + 3i$. Find
 - (a) $2z_1 z_2 =$
 - (b) $z_1 z_2 =$
 - (c) $\bar{z} =$
 - (d) $\frac{1}{2}(z_1 + \overline{z_1}) =$
 - (e) $\frac{1}{2i}(z_1 \overline{z_1}) =$
- 6. Given $z_1 = x_1 + iy_1$ and $z_2 = x iy_2$. Find
 - (a) $\frac{1}{2}(z_1 + \overline{z_1}) =$

(b)
$$\frac{1}{2i}(z_1 - \overline{z_1}) =$$

- 7. The roots of characteristic equation with **real** coefficients are complex conjugate.
- 8. Write in the form a + ib the following complex numbers $(1 + i)^2$, $(1 + i)^3$ and $(1 + i)^n$.

- 9. Given $z = 2(\cos\frac{\pi}{10} + i\sin\frac{\pi}{10})$. Find modulus and argument of \overline{z} .
- 10. Given $z = \lambda + i\mu$.
 - (a) Find $Re(e^z)$ and $Im(e^z)$.
 - (b) Show that $e^{\bar{z}} = \overline{e^z}$.