Math 220 - Homework 10

Due Tuesday 04/24 at the beginning of class

Total points: 169

PART A
Problems from the textbook:

- Section 5.5 | problem | 1 | 2 | 4^{*} | $5(\mathrm{~b})$ | $6(\mathrm{a})^{*}$ | $6(\mathrm{~b})$ | 10^{*} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | points | 18 | 12 | 10 | 5 | 10 | 5 |
- Section 6.1 | problem | 1^{*} | 2^{*} | 3^{*} |
| :---: | :---: | :---: | :---: |
| points | 10 | 10 | 10 |

PART B

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=2020-4 x$.
(a) * [10 points] Compute $f([-4,4])$.(Give a formal proof.)
(b) $*[10$ points $]$ Compute $f^{-1}([-4,4])$.(Give a formal proof.)
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$.
(a) * [10 points] Compute $f([-4,4])$.(Give a formal proof.)
(b) * [8 points] Compute $f([-4,0])$.(Give a formal proof.)
3. [12 points] For each of the following functions write out $f(X)$ and $f^{-1}(W)$ for the given sets X and W, where $f: \mathbb{Z} \rightarrow \mathbb{Z}$.(No proofs are necessary.)
(a)

$$
f(n)=\left\{\begin{array}{lll}
n+1 & \text { if } & n \in \mathbb{E} \\
n & \text { if } & n \in \mathbb{O}
\end{array}, \quad X=\{0,1,5,9\}, \quad W=\mathbb{O}\right.
$$

(b) $f(n)=n^{2}, X=\{-2,-1,0,1,2\}, W=\{2,7,11\}$
4. [3 points] Let S be a nonempty subset of \mathbb{Z}^{+}. Complete the following sentence:
"An element a is not the smallest element of S if \ldots "
5. * [12 points] Prove the following so called Modified form of the Principle of Mathematical Induction:

Let $P(n)$ be a statement about the integer n so that n is a free variable in $P(n)$. Suppose that there is an integer n_{0} such that
(a) The statement $P\left(n_{0}\right)$ is true.
(b) For all positive integers k such that $k \geq n_{0}$, if $P(k)$ is true, then $P(k+1)$ is also true.

Then $P(n)$ is true for every positive integer $n \geq n_{0}$.
6. [6 points] Restate the following so called Strong Principle of Mathematical Induction in set theory language.
(Hint: see the proof of the Theorem 1 in notes.)
Let $P(n)$ be a statement about the positive integer n so that n is a free variable in $P(n)$. Suppose the following:
(a) The statement $P(1)$ is true.
(b) For all positive integers k, if $P(i)$ is true for every positive integer $i \leq k$, then $P(k+1)$ is true.

Then $P(n)$ is true for every positive integer n.
7. [8 points] Let $a, b, c \in \mathbb{Z}$. Determine the truth or falsehood of the following statements.
(a) $\operatorname{gcd}(a, 0)=a$.
(b) Let a and b be not both zero. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)$.
(c) The Well Ordering Principle implies that the set \mathbb{E} of even integers contains a least element.
(d) $\operatorname{gcd}(a, b)=\operatorname{gcd}(-a,|b|)$.

