Math 220 - Homework 11

Due Thursday 11/29 at the beginning of class

Total points: 134

PART A

Problems from the textbook:

• Section 5.5	problem	1	2	4*	5(b)	$6(a)^*$	6(b)	10*
	points	24	16	10	10	10	10	10

PART B

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x 2019.
 - (a) * [10 points] Compute f([-3,3]). (Give a formal proof.)
 - (b) * [10 points] Compute $f^{-1}([-3,3])$. (Give a formal proof.)
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^4$.
 - (a) * [10 points] Compute f([-2,2]). (Give a formal proof.)
 - (b) * [8 points] Compute f([-2,0]). (Give a formal proof.)
- 3. [16 points] For each of the following functions write out f(A) and $f^{-1}(B)$ for the given sets A and B, where $f: \mathbb{Z} \to \mathbb{Z}$. (No proofs are necessary.)

(a)
$$f(n)=\left\{\begin{array}{ll} 1-n & \text{if} \quad n\in\mathbb{E}\\ 2-n & \text{if} \quad n\in\mathbb{O} \end{array}\right.,\quad A=\left\{0,1,7,11\right\},\quad B=\mathbb{O}.$$

(b)
$$f(n) = n^4$$
, $A = \{-2, -1, 0, 1, 2\}$, $B = \{2, 7, 11\}$