Math 220 - Homework 11

Due at the beginning of Final Exam.

PART A

Problems from the textbook:

- Section 6.2 \# 1(a,b), 3
- Section 6.3 \# 3, 11

PART B

1. Let $a=255$ and $b=-143$
(a) [6 points] Use the Euclidean Algorithm to determine $\operatorname{gcd}(a, b)$.
(b) [6 points] Find integers x and y such that $a x+b y=\operatorname{gcd}(a, b)$.
2. (a) Write the integer 42750 in a compact standard form.
(b) Determine the following, representing your answer in the compact standard form:

$$
\operatorname{gcd}\left(2^{2018} \cdot 3^{4} \cdot 55 \cdot 7^{2}, 6 \cdot 3^{2} \cdot 77\right)
$$

3. Prove that if p is a prime number greater than 3 , then p is of the form $3 k+1$ or $3 k+2$.
4. Prove that if p is a prime number, then $\sqrt[n]{p}$ is irrational for every integer $n \geq 2$.
5. Prove or disprove that 3 is the only prime number of the form $n^{2}-1$.
6. Prove that if a is a positive integer of the form $3 n+2$, then at least one prime divisor of a is of the form $3 n+2$.
