Math 220 – Homework 3 (HNR)

Due Thursday 9/20 at the beginning of class

Total points: 136 (Problems marked by * will count toward writing portion.)

PART A

Problems from the textbook:

problem	3.10*	$2.80(a)^*$	2.82 *	2.84*	It is advised to read Section 2.11 in the textbook.
points	10	10	15	10	

PART B

- 1. [18 points] Let *n* represents some fixed integer. In each of the following statements identify the hypothesis (assumption) and conclusion.
 - (a) The number n divides 5 only if n divides 10,
 - (b) The condition $n^2 \in 3\mathbb{Z}$ is necessary for n to be a multiple of 3.
 - (c) The condition $n \in \mathbb{E}$ is sufficient for n to be a multiple of 4.
- 2. * [10 points] Let $x \in \mathbf{R}$. Prove that if |x| < 1, then $x^4 2x^2 + 2 \neq 0$.
- 3. * [10 points] Let $x \in \mathbf{R}^+$. Prove that if $x^2 2x + 2 \le 0$, then $x^{2019} \ge 2019$.
- 4. * [10 points] Prove that if n is an even integer, then $n^{2019} + 19(n-1)^2 2019$ is even. (Give a formal proof).
- 5. Consider the following statement:

'For all integers x and y such that $x \neq 0$, if x|y, then $x^{17}|y^{17}$.''

- (a) [10 points] Prove the above statement.
- (b) [3 points] Formulate the converse statement.
- 6. [12 points] For the statement

```
S: ''For every integer n, if n is divisible by 3 and n is divisible by 5, then n is divisible by 15.'' write in a useful form
```

- (a) the converse of S;
- (b) the contrapositive of S.
- (c) the converse of the contrapositive of S;
- (d) the contrapositive of the converse of S.
- 7. Consider the following definition:

A real-valued function f(x) is said to be decreasing on the closed interval [a, b], if for all $x_1, x_2 \in [a, b]$, if $x_1 < x_2$, then $f(x_1) > f(x_2)$.

- (a) [6 points] Write the negation of this definition completing the following: "A real-valued function f(x) is said to be **not decreasing** on the closed interval [a, b], if ..."
- (b) [6 points] Give an example of a decreasing function on [-1,1] and based on the above definition explain why your example is correct.
- (c) [6 points] Give an example of a function that is not decreasing on [-1, 1] and based on the negation of the above definition explain why your example is correct.