Math 220 - Homework 3

point split: Total 120 Points
Due Wednesday 09/22 at the beginning of class

PART A

Problems from the textbook:

- Section 1.4 \# 5, 7, 20

PART B

1. Let $x \in \mathbf{R}$. Prove that if $x^{2}-2 x+2 \leq 0$, then $x^{2016} \geq 2016$.
2. Prove that if n is an even integer, then $n^{2016}+(n-1)^{2}-17$ is even.
3. Prove that if x and y are odd integers, then $x z-y z$ is even for every integer z.
4. Prove the following statement:
''Let $n \in \mathbf{Z}$. Then n is odd if and only if $7 n+17$ is even.',
5. Prove that if $n \in \mathbf{Z}$, then $n^{3}+n$ is even.
6. Prove that $5 x-3 y$ is even, then x and y are of the same parity.
7. Consider the following statement:
''For all integers x and y such that $x \neq 0$, if $x \mid y$, then $x^{5} \mid y^{5}$.',
(a) Prove the above statement.
(b) Formulate the converse statement.
(c) If the converse statement is true, prove it. Otherwise, explain why it is false.
8. (a) Let $n \in \mathbf{Z}$. Prove that if $2 \mid\left(n^{2}-5\right)$, then $4 \mid\left(n^{2}-5\right)$.
(b) Give an example of an integer n such that $2 \mid\left(n^{2}-5\right)$, but $8 X\left(n^{2}-5\right)$.
