## Math 220 - Homework 3

## Due Friday $2 / 13$ at the beginning of class

Total points: 171

## PART A

Problems from the textbook:

- Section 2.1 problem |  | $1^{*}$ | $4^{*}$ | $5(\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{f}, \mathrm{g})^{*}$ |
| :---: | :---: | :---: | :---: |
|  | points | 10 | 20 |
|  | 30 |  |  |


## PART B

1.     * [10 points] Prove that if $x$ and $y$ are odd integers, then $x z-y z$ is even for every integer $z$.
2.     * [20 points] Let $a$ and $b$ be integers. Prove the following statements.
(a) If $a \mid b$, then $a \mid\left(b^{4}-b^{2}+5 b\right)$.
(b) If $a^{2} \mid a$, then $a \in\{-1,0,1\}$.
3.     * [20 points] Prove or disprove the following statements:
(a) For all real numbers $a$ and $b, \sqrt{a^{2}+b^{2}}=\sqrt{a^{3}+b^{3}}$.
(b) Let $n \in \mathbf{Z}$. If $n^{2}+3 n$ is even, then $n$ is odd.
(c) If $n \in\{0,1,2,3,4\}$, then $2^{n}+3^{n}+n(n-1)(n-2)$ is prime.
(d) For every integer $n$, if $n \in \mathbb{E}$ and $n \in 6 \mathbb{Z}$, then $n$ is divisible by 12 .
4. Consider the following statement:
' $F$ or all integers $a$ and $b$ such that $a \neq 0$, if $a \mid b$, then $a^{7} \mid b^{7}$. .'
(a) * [10 points] Prove the above statement.
(b) [3 points] Formulate the converse statement.
5. [12 points] For the statement
$S$ : ' 'For every integer $n$, if $n$ is divisible by 3 and $n$ is divisible by 5 , then $n$ is divisible by 15.'' write in a useful form
(a) the converse of $S$;
(b) the contrapositive of $S$.
(c) the converse of the contrapositive of $S$;
(d) the contrapositive of the converse of $S$.
6. Consider the following definition:

A real-valued function $f(x)$ is said to be monotonically decreasing on the closed interval $I$, if for all $x_{1}, x_{2} \in I$, if $x_{1}<x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$.
(a) [6 points] Write the negation of this definition completing the following: "A real-valued function $f(x)$ is said to be not monotonically decreasing on the closed interval $I$, if ..."
(b) [6 points] Give an example of a monotonically decreasing function on the interval $[-1,1]$ and based on the above definition explain why your example is correct.
(c) [6 points] Give an example of a function that is not monotonically decreasing on the interval $[-1,1]$ and based on the negation of the above definition explain why your example is correct.
7. [ $\mathbf{1 8}$ points] Let $n$ represents some fixed integer. In each of the following statements identify the hypothesis (assumption) and conclusion.
(a) The number $n$ divides 5 only if $n$ divides 10 ,
(b) The condition $n^{2} \in 3 \mathbb{Z}$ is necessary for $n$ to be a multiple of 3 .
(c) The condition $n \in \mathbb{E}$ is sufficient for $n$ to be a multiple of 4 .

