Math 220 – Homework 3

Due Friday 2/13 at the beginning of class

Total points: 171

PART A

Problems from the textbook:

• Section 2.1	problem	1*	4*	$5(a,b,e,f,g)^*$
	points	10	20	30

PART B

- 1. * [10 points] Prove that if x and y are odd integers, then xz yz is even for every integer z.
- 2. * [20 points] Let a and b be integers. Prove the following statements.
 - (a) If a|b, then $a|(b^4 b^2 + 5b)$.
 - (b) If $a^2|a$, then $a \in \{-1, 0, 1\}$.
- 3. * [20 points] Prove or disprove the following statements:
 - (a) For all real numbers a and b, $\sqrt{a^2 + b^2} = \sqrt{a^3 + b^3}$.
 - (b) Let $n \in \mathbf{Z}$. If $n^2 + 3n$ is even, then n is odd.
 - (c) If $n \in \{0, 1, 2, 3, 4\}$, then $2^n + 3^n + n(n-1)(n-2)$ is prime.
 - (d) For every integer n, if $n \in \mathbb{E}$ and $n \in 6\mathbb{Z}$, then n is divisible by 12.
- 4. Consider the following statement:

''For all integers a and b such that $a \neq 0$, if a|b, then $a^7|b^7$.''

- (a) * [10 points] Prove the above statement.
- (b) [3 points] Formulate the converse statement.
- 5. [12 points] For the statement

S: 'For every integer n, if n is divisible by 3 and n is divisible by 5, then n is divisible by 15.' write in a useful form

- (a) the converse of S;
- (b) the contrapositive of S.
- (c) the converse of the contrapositive of S;
- (d) the contrapositive of the converse of S.
- 6. Consider the following definition:

A real-valued function f(x) is said to be monotonically decreasing on the closed interval I, if for all $x_1, x_2 \in I$, if $x_1 < x_2$, then $f(x_1) > f(x_2)$.

- (a) [6 points] Write the negation of this definition completing the following: "A real-valued function f(x) is said to be **not monotonically decreasing** on the closed interval I, if ..."
- (b) [6 points] Give an example of a monotonically decreasing function on the interval [-1, 1] and based on the above definition explain why your example is correct.

- (c) [6 points] Give an example of a function that is not monotonically decreasing on the interval [-1,1] and based on the negation of the above definition explain why your example is correct.
- 7. [18 points] Let *n* represents some fixed integer. In each of the following statements identify the hypothesis (assumption) and conclusion.
 - (a) The number n divides 5 only if n divides 10,
 - (b) The condition $n^2 \in 3\mathbb{Z}$ is necessary for n to be a multiple of 3.
 - (c) The condition $n \in \mathbb{E}$ is sufficient for n to be a multiple of 4.