Math 220 (902\&906) - Homework 4

Due Wednesday 09/29 at the beginning of class

PART A

Problems from the textbook:

- Section 1.3 \# 1(b,c), 2(a,b,c), 4, 8
- Section $1.4 \# 17,21^{1}$

PART B

1. Disprove the following statements:
(a) For all positive integers $x, y, z, x^{y^{z}}=\left(x^{y}\right)^{z}$.
(b) If $n \in\{0,1,2,3,4\}$, then $2^{n}+3^{n}+n(n-1)(n-2)$ is prime.
(c) There exist odd integers a and b such that $4 \mid\left(7 a^{2}-b^{2}\right)$. (Hint: Use proof by contradiction.)
2. Prove the statement ' If n is an odd integer, then $27 n+5$ is even.') by
(a) a direct proof;
(b) a proof by contrapositive;
(c) a proof by contradiction.
3. Let $x, y \in \mathbf{R}$. Proof that if $x y \neq 0$, then $x \neq 0$ by using more than one method of proof.
4. Use proof by contradiction to prove that if a and b are odd integers, then $4 X\left(a^{2}+b^{2}\right)$.
5. Consider the following statement:

$$
\text { "If } \sqrt{3}<\sqrt{7} \text {, then } 3<7 \text {." }
$$

Write in a useful form
(a) the converse;
(b) the contrapositive;
(c) the converse of contrapositive;
(d) the contrapositive of converse.

[^0]
[^0]: ${ }^{1}$ Hint: use problem 20 from the section 1.4

