Math 220 - Homework 4

Due Thursday $9 / 27$ at the beginning of class

Total points: 170 (Problems marked by $*$ will count toward writing portion.)
PART A
Problems from the textbook:

- Section 2.1 | problem | 1^{*} | 4^{*} | $5(\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{f}, \mathrm{g})^{*}$ |
| :---: | :---: | :---: | :---: |
| | points | 10 | 20 |
| | 30 | | |

PART B

1. * [40 points] Prove or disprove the following statements:
(a) For all positive integers $x, y, z, x^{y^{z}}=\left(x^{y}\right)^{z}$.
(b) If $n \in\{0,1,2,3,4\}$, then $2^{n}+3^{n}+n(n-1)(n-2)$ is prime.
(c) For every integer n, if n is divisible by 2 and n is divisible by 6 , then n is divisible by 12 .
(d) There exists an odd integer n such that $n^{2}+2 n+3$ is odd.
2. ${ }^{*}[10$ points $]$ Let $a, b \in \mathbb{Z}$. Prove that if $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
3. ${ }^{*}$ [10 points] Prove that for every integer x, the integers $3 x+1$ and $5 x+2$ are of opposite parity.
4. ${ }^{*}[10$ points $]$ Let $x \in \mathbb{Z}$. Prove that if $7 x+5$ is odd, then x is even.
5. ${ }^{*}[10$ points $]$ Let $x, y \in \mathbb{Z}$. Prove that if $x y$ is odd, then x and y are odd.
6. *[10 points] Let $x, y \in \mathbb{Z}$. Prove that if $3 x+7 y$ is even, then x and y are of the same parity.
7. $*[10$ points $]$ Let $a, b, c \in \mathbb{Z}$. Prove that if $a \not \backslash b c$, then $a \nless b$ and $a \nless c$.
8. *[10 points] Prove that if n is an odd integer, then $8 \mid\left(n^{2}+(n+6)^{2}+6\right)$.
