Math 220 - Homework 5

Due Thursday 10/04 at the beginning of class

Total points: 132 (Problems marked by $*$ will count toward writing portion.)
PART A*
Problems from the textbook:

- Section 2.2 | problem | 3^{*} | 5^{*} |
| :---: | :---: | :---: |
| | points | 10 |

PART B

1. * [10 points] Let $a, b \in \mathbf{R}$. Proof that if $a b \neq 0$, then $a \neq 0$ and $b \neq 0$.
2. * [10 points] Prove that if a, and b are odd integers, then $4 X\left(a^{2}+b^{2}\right)$.
3. ${ }^{*}$ Let n be an integer.
(a) [10 points] Prove that n is even if and only if n^{3} is even.
(b) [2 points] Prove that n is odd if and only if n^{3} is odd.
(c) $[10$ points $]$ Prove that $\sqrt[3]{2}$ is irrational.
4. (a) * [10 points] Let $n \in \mathbb{Z}$. Prove that if $2 \mid\left(n^{2}-5\right)$, then $4 \mid\left(n^{2}-5\right)$.
(b) $[5$ points $]$ Give an example of an integer n such that $2 \mid\left(n^{2}-5\right)$, but $8 \times\left(n^{2}-5\right)$
5. Consider the statement:
"If the product of two integers is even, then at least one of these integers is even."
(a) $[2$ points $]$ Rewrite the statement in symbols.
(b) $*[8$ points $]$ Give a formal proof.
6. * [10 points] Prove that there are no integers m and n such that $m^{2}=4 n+3$.
7. * [10 points] Let $a, b \in \mathbb{Z}$ such that $a \geq 2$. Prove that $a \nmid b$ or $a \nless(b+1)$.
8. * [10 points] Prove that there is no largest negative rational number.
9. * Prove the statement ' If n is an odd integer, then $3-5 n$ is even.') by
(a) $[5$ points] a direct proof (give a formal proof);
(b) [5 points] a proof by contrapositive (give a formal proof);
(c) $[5$ points $]$ a proof by contradiction (give a formal proof).
