Math 220 - Homework 6

Due Thursday 10/20 at the beginning of class

PART A

Problems from the textbook:
Section 2.1 \# 1(b, c, e, i); 2(b, f,h); 4(b,c,f,i); 5; 14; 15;
Section $2.2 \# 4(\mathrm{~b}, \mathrm{e}), 5(\mathrm{~b}, \mathrm{e}), 6$
Section 2.3 \# 2, 4(a,b,c).

PART B

1. Determine the truth or falsehood of the following statements. (Write TRUE or FALSE for each statement.)
(a) The contrapositive of the statement
"If all elements of A are elements of B, then A is a subset of B " is the statement
"If A is a subset of B, then all elements of A are elements of B ".
(b) $\{a, b\}=\{b, a, b\}$
(c) If $A=\{m \in \mathbb{Z} \mid 2<m \leq 5\}$ then $|A|=4$.
(d) The empty set is a subset of every set except itself.
(e) $5 \in\{\{-1,5\},\{-5,2017,0\},\{1,2\}\}$.
(f) If $A=\{a,\{a, b, c\}\}$ and $B=\{\{c, d\},\{a, b, c, d\}\}$ then $|A|=|B| \ldots$
2. For the sets $A=\{x \in \mathbb{Z} \mid 2 \leq x<4\}$ and $B=\left\{x \in \mathbb{R} \mid x^{4}=1\right\}$ form the following Cartesian products:
(a) $B \times A$
(b) $B \times A \times B$.
3. Let A, B, and C be nonempty subsets of a universal set U. Disprove the following statements:
(a) If $A \cap B=A \cap C$, then $B=C$.
(b) If $A-B=C-B$, then implies $A=C$.
(c) If A is not a subset of B and B is not a subset of A, then $A \cap B=\emptyset$.
4. Let $U=\mathbb{R}$ be a universal set. Consider $A=\{x \in \mathbb{R}| | 2 x+3 \mid \geq 29\}$ and $B=\{x \in \mathbb{R}| | x \mid \leq 1\}$.
(a) Express the sets A and B using interval notation (as an interval or a union of intervals).
(b) Determine $\bar{A} \cap \bar{B}$ as an interval or a union of intervals.
5. Let $U=\{x, y, a, b, c\}$ be the universal set and let $M=\{x, y, a, b\}, N=\{a, c, x, y\}, P=\{b, c\}$. Determine the following (show all intermediate steps):
(a) $\bar{M} \cup(N \cap P)$
(b) $\overline{\overline{P \cup N} \cap U}$
(c) $\overline{(M \cup P)-(N \cap P)}$
6. Let $A=\left\{(x, y) \in \mathbf{Z}^{+} \times \mathbf{Z}| | x|+|y|=2\}\right.$. List all elements of A and find $|A|$.
