Math 220 - Homework 6

Due Tuesday 03/20 at the beginning of class

Total points: 237

PART A

Problems from the textbook:

- Section 4.1 | problem | 4^{*} | 5^{*} | 6^{*} |
| :---: | :---: | :---: | :---: |
| points | 10 | 10 | 10 |
- Section 4.2 | problem | $1(\mathrm{f})^{*}$ | 11 | 15 | $16(\mathrm{c})$ | 18 | $23(\mathrm{~b})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | points | 10 | 5 | 8 | 4 | 15 |
| | | 10 | | | | |

PART B

1. * [15 points] Let A, B, and C be nonempty subsets of a universal set U. Disprove the following statements:
(a) If $A \cap B=A \cap C$, then $B=C$.
(b) If $A-B=C-B$, then implies $A=C$.
(c) If A is not a subset of B and B is not a subset of A, then $A \cap B=\emptyset$.
2. [6 points] Describe the following sets by listing their elements.
(a) The set of all reminders when a positive integer is divided by 8 .
(b) The set of all integers of absolute value less than 1.
3. [6 points] Describe the following sets by listing enough elements to indicate a pattern for all elements of the set.
(a) The set of all reminders when a natural number is divided by 2018.
(b) The set of all numbers x for which $\sin x=1$.
4. [6 points] Describe the following sets using a set-builder notation. Namely, write them in the form $\{x \in D \mid \ldots\}$ for the appropriate set D.
(a) The set of all rational numbers between 0 and 1 inclusive.
(b) The set of all numbers x for which $\tan x=0$.
5. [12 points] Let $U=\mathbb{R}$ be the universal set. Consider $A=\{x \in \mathbb{R}| | 2 x+3 \mid \geq 19\}$ and $B=\{x \in \mathbb{R}| | x \mid \leq 3\}$.
(a) Express the sets A and B using interval notation (as an interval or a union of intervals).
(b) Determine $\bar{A} \cap \bar{B}$ as an interval or a union of intervals.
6. [15 points] Let $U=\{x, y, 1,2,3\}$ be the universal set and let $A=\{x, y, 1,2\}, B=\{2,3\}, C=\{1,3, x, y\}$. Determine the following (show all intermediate steps):
(a) $\bar{A} \cup(B \cap C)$
(b) $\overline{B \cup C} \cap U$
(c) $\overline{(A \cup B)-(B \cap C)}$
7. 10pts Given $A=\{x \in \mathbb{Z}| | x \mid>10\}$. Compute the compliment of A, if
(a) $U=\mathbb{Z}$.
(b) $U=\mathbb{R}$.
8. 10pts Given $A=\{x \in \mathbb{R}| | x \mid>10\}$ and $B=\{x \in \mathbb{R}|0<|x| \leq 12\}$. Compute $A-B$ and $B-A$.

PART C
Print it out and attach to the Homework

1. [12 points] Determine the truth or falsehood of the following statements. (CLEARLY circle TRUE or FALSE for each statement.)
(a) TRUE/ FALSE The contrapositive of the statement
"If all elements of A are elements of B, then A is a subset of B "
is the statement
"If A is a subset of B, then all elements of A are elements of B ".
(b) TRUE/ FALSE $\{a, b\}=\{b, a, b\}$
(c) TRUE/ FALSE If $A=\{m \in \mathbb{Z} \mid 2<m \leq 5\}$ then $|A|=4$.
(d) TRUE/ FALSE The empty set is a subset of every set except itself.
(e) TRUE/ FALSE $7 \notin\{\{-1,7\},\{-7,2017,0\},\{1,2\}\}$.
(f) TRUE/ FALSE If $A=\{a,\{a, b, c\}\}$ and $B=\{\{c, d\},\{a, b, c, d\}\}$ then $|A|=|B|$. .
2. [19 points] Given $A=\{0,1,2, \ldots, 8\}, B=\{1,3,5,7\}, C=\{3,5,1,7,3,1\}$, $D=\{5,3,1\}$, and $E=\emptyset$. Determine the truth or falsehood of the following statements.(CLEARLY circle T (TRUE) or F (FALSE) for each statement.)
(a) $\mathrm{T} / \mathrm{F} B=C$
(b) $\mathrm{T} / \mathrm{F} B \subseteq C$
(c) $\mathrm{T} / \mathrm{F} B \subset C$
(d) $\mathrm{T} / \mathrm{F} C \subseteq B$
(e) $\mathrm{T} / \mathrm{F} D \subset B$
(f) $\mathrm{T} / \mathrm{F} D \subseteq B$
(g) $\mathrm{T} / \mathrm{F} B \subset D$
(h) $\mathrm{T} / \mathrm{F} 8 \in A$
(i) $\mathrm{T} / \mathrm{F}\{4,6\} \subset A$
(j) $\mathrm{T} / \mathrm{F} 1,5 \subset A$
(k) $\mathrm{T} / \mathrm{F} 9 \notin C$
(1) $\mathrm{T} / \mathrm{F} D \subseteq D$
(m) $\mathrm{T} / \mathrm{F} \emptyset=0$
(n) $\mathrm{T} / \mathrm{F} 0 \in E$
(o) $\mathrm{T} / \mathrm{F} A \in A$
(p) $\mathrm{T} / \mathrm{F} \quad|A|=8$
(q) $\mathrm{T} / \mathrm{F} \quad|C|=7$
(r) $\mathrm{T} / \mathrm{F}|E|=0$
(q) $\mathrm{T} / \mathrm{F}|B|=5$
3. 14pts Let A, B, and C be nonempty sets. Determine the truth or falsehood of the following statements. (CLEARLY circle TRUE or FALSE for each statement.)
(a) TRUE/ FALSE $\quad A-A=\emptyset$.
(b) TRUE/ FALSE $A \subset A$.
(c) TRUE/ FALSE $A \cup(B \cap C)=(A \cap C) \cup(B \cap C)$.
(d) TRUE/ FALSE $A \cup A=A \cap A$ for all sets A.
(e) TRUE/ FALSE If $|A|=|B|$ then $A \times B=B \times A$.
(f) TRUE/ FALSE $A \times B=B \times A$ for all nonempty sets A and B.
(g) TRUE/ FALSE If $\{1\} \in P(A)$, then $1 \in A$ and $\{1\} \notin A$.
4. 10pts Let $A=\{x \in \mathbb{N} \mid 1 \leq x<5\}$ and $P(A)$ be a power set of A. Determine the truth or falsehood of the following statements. (CLEARLY circle TRUE or FALSE for each statement.)
(a) TRUE/ FALSE $A \subset P(A)$.
(b) TRUE/ FALSE $\{2\} \in P(A)$.
(c) TRUE/ FALSE $[3,4] \subseteq A$.
(d) TRUE/ FALSE $|P(A)|=32$
(e) TRUE/ FALSE $\emptyset \subseteq P(A)$ and $\emptyset \in P(A)$.
5. 20pts Assume that A and B are sets and P and Q are propositions. Characterize the following expressions as either
(i) a proposition
(ii) not a proposition, but an expression that makes sense mathematically.
(iii) an expression that makes no sense mathematically.
(CLEARLY circle i, ii, or iii for each statement.)
(a) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad B \subset A$
(b) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad A \Rightarrow B$
(c) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad P \Rightarrow(A=B)$
(d) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad P \subseteq Q$
(e) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad P=Q$
(f) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} \quad B \cap(A-B)$
(g) i / ii /iii $P \cup Q$
(h) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} A+B$
(i) i/ ii /iii $\quad(\exists x \in P)[x \in Q]$
(j) $\mathrm{i} / \mathrm{ii} / \mathrm{iii} A \wedge B$
