© Oksana Shatalov, Fall 2018

Math 220 HNR - Homework 7

Due Thursday 10/25 at the beginning of class

Total points: 295

PART A

problem 1.4(a,b,c,d)1.8 1.12 1.22 1.28 1.46 1.48 Problems from the textbook: Read section 1.5. points 12 25 5 18 10 30

PART B

- 1. * [10 points] Let A, B, and C be subsets of some universal set U. Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 2. * [10 points] Consider the sets $A = \{n \in \mathbb{Z} | \exists k \in \mathbb{Z} \ni n = 12k + 11\} \text{ and } B = \{n \in \mathbb{Z} | \exists k \in \mathbb{Z} \ni n = 4k + 3\}.$
 - (a) Is $A \subseteq B$? Prove or disprove.
 - (b) Is $B \subseteq A$? Prove or disprove.
- 3. * [10 points] Consider the sets $A = \{n \in \mathbb{Z} | \exists k \in \mathbb{Z} \ni n = 3k \}$ and $B = \{n \in \mathbb{Z} | \exists i, j \in \mathbb{Z} \ni n = 15i + 12j \}$. Prove that A = B.
- 4. * [10 points] Consider the sets $A = \{n \in \mathbb{Z} | \exists k \in \mathbb{Z} \ni n = 4k + 1\}$ and $B = \{n \in \mathbb{Z} | \exists k \in \mathbb{Z} \ni n = 4k 7\}$. Prove that A = B.
- 5. * [15 points] Let A, B, and C be nonempty subsets of a universal set U. Disprove the following statements:
 - (a) If $A \cap B = A \cap C$, then B = C.
 - (b) If A B = C B, then implies A = C.
 - (c) If A is not a subset of B and B is not a subset of A, then $A \cap B = \emptyset$.
- 6. [6 points] Describe the following sets by listing their elements.
 - (a) The set of all reminders when a positive integer is divided by 8.
 - (b) The set of all integers of absolute value less than 1.
- 7. [6 points] Describe the following sets by listing enough elements to indicate a pattern for all elements of the set.
 - (a) The set of all reminders when a natural number is divided by 2018.
 - (b) The set of all numbers x for which $\sin x = 1$.
- 8. [6 points] Describe the following sets using a set-builder notation. Namely, write them in the form $\{x \in D | \ldots\}$ for the appropriate set D.
 - (a) The set of all rational numbers between 0 and 1 inclusive.
 - (b) The set of all numbers x for which $\tan x = 0$.
- 9. [12 points] Let $U = \mathbb{R}$ be the universal set. Consider $A = \{x \in \mathbb{R} | |2x+3| \ge 19\}$ and $B = \{x \in \mathbb{R} | |x| \le 3\}$.
 - (a) Express the sets A and B using interval notation (as an interval or a union of intervals).
 - (b) Determine $\overline{A} \cap \overline{B}$ as an interval or a union of intervals.
- 10. [10 points] Given $A = \{x \in \mathbb{Z} | |x| > 10\}$. Compute the compliment of A, if (a) $U = \mathbb{Z}$ (b) $U = \mathbb{R}$.
- 11. [10 points] Given $A = \{x \in \mathbb{R} | |x| > 10\}$ and $B = \{x \in \mathbb{R} | 0 < |x| \le 12\}$. Compute A B and B A.
- 12. [5 points] Let $A = \{a, b\}$, $B = \{1, 2\}$, and $C = \{c, d, e\}$. Explain why $A \times (B \times C) \neq (A \times B) \times C$.

PART C

Print it out and attach to the Homework

NAME (print)

- 1. [12 points] Determine the truth or falsehood of the following statements. (CLEARLY circle TRUE or FALSE for each statement.)
 - (a) TRUE/ FALSE The contrapositive of the statement

"If all elements of A are elements of B, then A is a subset of B"

is the statement

"If A is a subset of B, then all elements of A are elements of B".

- (b) TRUE/ FALSE $\{a, b\} = \{b, a, b\}$
- (c) TRUE/ FALSE If $A = \{m \in \mathbb{Z} | 2 < m \le 5\}$ then |A| = 4.
- (d) TRUE/ FALSE The empty set is a subset of every set except itself.
- (e) TRUE/ FALSE $7 \notin \{\{-1,7\}, \{-7,2017,0\}, \{1,2\}\}$.
- (f) TRUE/ FALSE If $A = \{a, \{a, b, c\}\}$ and $B = \{\{c, d\}, \{a, b, c, d\}\}$ then |A| = |B|.
- 2. [19 points] Given $A = \{0, 1, 2, \dots, 8\}$, $B = \{1, 3, 5, 7\}$, $C[20pts] = \{3, 5, 1, 7, 3, 1\}$, $D = \{5, 3, 1\}$, and $E = \emptyset$. Determine the truth or falsehood of the following statements. (CLEARLY circle T (TRUE) or F (FALSE) for each statement.)
 - (a) $|\mathsf{T}/\mathsf{F}| B = C$
- (b) $|T/F|B \subseteq C$
- (c) $|\mathsf{T}/\mathsf{F}| B \subset C$
- (d) $|\mathsf{T}/\mathsf{F}| C \subseteq B$
- (e) $|T/F|D \subset B$

- $(\mathbf{f}) \mid \mathsf{T}/\mathsf{F} \mid D \subseteq B$
- (g) $T/F B \subset D$
- (h) $T/F \mid 8 \in A$
- (i) T/F $\{4,6\} \subset A$ (j) T/F $1,5 \subset A$

- (1) T/F $D \subseteq D$
- $(\mathbf{m}) \left[\mathsf{T}/\mathsf{F} \right] \emptyset = 0$
- $(\mathbf{n}) \left\lceil \mathsf{T}/\mathsf{F} \right\rceil 0 \in E$

- $(\mathbf{q}) | \mathsf{T}/\mathsf{F} | |C| = 7$
- $(\mathbf{r}) | \mathsf{T}/\mathsf{F} | |E| = 0$
- 3. [14 points] Let A, B, and C be nonempty sets. Determine the truth or falsehood of the following statements. (CLEARLY circle TRUE or FALSE for each statement.)
 - (a) TRUE/ FALSE $A A = \emptyset$.
 - (b) TRUE/ FALSE $A \subset A$.
 - (c) TRUE/ FALSE $A \cup (B \cap C) = (A \cap C) \cup (B \cap C)$.
 - (d) TRUE/ FALSE $A \cup A = A \cap A$ for all sets A.
 - (e) TRUE/ FALSE If |A| = |B| then $A \times B = B \times A$.
 - (f) TRUE/ FALSE $A \times B = B \times A$ for all nonempty sets A and B.
 - (g) TRUE/ FALSE If $\{1\} \in P(A)$, then $1 \in A$ and $\{1\} \notin A$.
- 4. [10 points] Let $A = \{x \in \mathbb{N} | 1 \le x \le 5\}$ and P(A) be a power set of A. Determine the truth or falsehood of the following statements. (CLEARLY circle TRUE or FALSE for each statement.)
 - (a) TRUE/ FALSE $A \subset P(A)$.
 - (b) TRUE/ FALSE $\{2\} \in P(A)$.
 - (c) TRUE/ FALSE $[3,4] \subseteq A$.
 - (d) TRUE/ FALSE |P(A)| = 32
 - (e) TRUE/ FALSE $\emptyset \subseteq P(A)$ and $\emptyset \in P(A)$.

- 5. [20 points] Assume that A and B are sets and P and Q are propositions. Characterize the following expressions as either
 - (i) a proposition/statement
 - (ii) not a proposition/statement, but an expression that makes sense mathematically.
 - (iii) an expression that makes no sense mathematically.

(CLEARLY circle i, ii, or iii for each statement.)

- (a) $|i/ii/iii| B \subset A$
- (b) $|i/ii/iii| A \Rightarrow B$
- (c) |i|/ii| $P \Rightarrow (A = B)$
- (d) $|i|/ii|/iii| P \subseteq Q$
- (e) $\boxed{i / ii / iii}$ P = Q
- (f) [i/ii/iii] $B \cap (A-B)$
- (g) $\boxed{\mathsf{i} / \mathsf{i} \mathsf{i} / \mathsf{i} \mathsf{i}} \quad P \cup Q$
- (h) $\boxed{i / ii / iii}$ A + B
- (i) [i/ii/iii] $(\exists x \in P)[x \in Q]$
- (j) $|i/ii/iii| A \wedge B$