Math 220 – Homework 7

Due Thursday 10/25 at the beginning of class

Total points: 250

PART A

Problems from the textbook:

• Section 4.1	problem	4*	5^{*}	6*				
	points	10	10	10				
• Section 4.2	problem	1(f)	*	1	15	16(c)	18	23(b)
	points	10		5	8	4	15	10

PART B

1. [18 points] Let $U = \{1, 3, 5, ..., 15\}$ be the universal set and let $A = \{1, 5, 9, 13\}$, and B = 3, 9, 15. Determine the following:

(a) $A \cup B$ (b) $A \cap B$ (c) A - B (d) B - A (e) $A \cap \overline{B}$.

2. [10 points] Let A, B and C be nonempty subsets of a universal set U. Draw a Venn diagram for each of the following set operations.

(a) $A \cup (C - B)$ (b) $C \cap (A - B)$

- 3. * [15 points] Let A, B, and C be nonempty subsets of a universal set U. Disprove the following statements:
 - (a) If $A \cap B = A \cap C$, then B = C.
 - (b) If A B = C B, then implies A = C.
 - (c) If A is not a subset of B and B is not a subset of A, then $A \cap B = \emptyset$.
- 4. [6 points] Describe the following sets by listing their elements.
 - (a) The set of all reminders when a positive integer is divided by 8.
 - (b) The set of all integers of absolute value less than 1.
- 5. [6 points] Describe the following sets by listing enough elements to indicate a pattern for all elements of the set.
 - (a) The set of all reminders when a natural number is divided by 2018.
 - (b) The set of all numbers x for which $\sin x = 1$.
- 6. [6 points] Describe the following sets using a set-builder notation. Namely, write them in the form $\{x \in D | \ldots\}$ for the appropriate set D.
 - (a) The set of all rational numbers between 0 and 1 inclusive.
 - (b) The set of all numbers x for which $\tan x = 0$.
- 7. [12 points] Let $U = \mathbb{R}$ be the universal set. Consider $A = \{x \in \mathbb{R} | |2x+3| \ge 19\}$ and $B = \{x \in \mathbb{R} | |x| \le 3\}$.
 - (a) Express the sets A and B using interval notation (as an interval or a union of intervals).
 - (b) Determine $\overline{A} \cap \overline{B}$ as an interval or a union of intervals.
- 8. [10 points] Given $A = \{x \in \mathbb{Z} | |x| > 10\}$. Compute the compliment of A, if (a) $U = \mathbb{Z}$ (b) $U = \mathbb{R}$.
- 9. [10 points] Given $A = \{x \in \mathbb{R} | |x| > 10\}$ and $B = \{x \in \mathbb{R} | 0 < |x| \le 12\}$. Compute A B and B A.

PART C

Print it out and attach to the Homework

NAME (print)

- 1. [12 points] Determine the truth or falsehood of the following statements. (CLEARLY circle TRUE or FALSE for each statement.)
 - (a) TRUE/ FALSE The contrapositive of the statement*"If all elements of A are elements of B, then A is a subset of B"*

is the statement

"If A is a subset of B, then all elements of A are elements of B".

- (b) TRUE/ FALSE $\{a, b\} = \{b, a, b\}$
- (c) TRUE/ FALSE If $A = \{m \in \mathbb{Z} | 2 < m \le 5\}$ then |A| = 4.
- (d) TRUE/ FALSE The empty set is a subset of every set except itself.
- (e) TRUE/ FALSE $7 \notin \{\{-1,7\}, \{-7,2017,0\}, \{1,2\}\}$.
- (f) TRUE/ FALSE If $A = \{a, \{a, b, c\}\}$ and $B = \{\{c, d\}, \{a, b, c, d\}\}$ then |A| = |B|.

2. [19 points] Given $A = \{0, 1, 2, ..., 8\}$, $B = \{1, 3, 5, 7\}$, C[20pts] = $\{3, 5, 1, 7, 3, 1\}$, $D = \{5, 3, 1\}$, and $E = \emptyset$. Determine the truth or falsehood of the following statements. (CLEARLY circle T (TRUE) or F (FALSE) for each statement.) (a) T/F B = C (b) T/F $B \subseteq C$ (c) T/F $B \subset C$ (d) T/F $C \subseteq B$ (e) T/F $D \subset B$

(f) $\overline{\mathsf{T}/\mathsf{F}} D \subseteq B$ (g) $\overline{\mathsf{T}/\mathsf{F}} B \subset D$ (h) $\overline{\mathsf{T}/\mathsf{F}} 8 \in A$ (i) $\overline{\mathsf{T}/\mathsf{F}} \{4,6\} \subset A$ (j) $\overline{\mathsf{T}/\mathsf{F}} 1,5 \subset A$ (k) $\overline{\mathsf{T}/\mathsf{F}} 9 \notin C$ (l) $\overline{\mathsf{T}/\mathsf{F}} D \subseteq D$ (m) $\overline{\mathsf{T}/\mathsf{F}} \emptyset = 0$ (n) $\overline{\mathsf{T}/\mathsf{F}} 0 \in E$ (o) $\overline{\mathsf{T}/\mathsf{F}} A \in A$

(**p**)
$$\boxed{\mathsf{T/F}} |A| = 8$$
 (**q**) $\boxed{\mathsf{T/F}} |C| = 7$ (**r**) $\boxed{\mathsf{T/F}} |E| = 0$ (**q**) $\boxed{\mathsf{T/F}} |B| = 5$

- 3. [14 points] Let A, B, and C be nonempty sets. Determine the truth or falsehood of the following statements. (CLEARLY circle TRUE or FALSE for each statement.)
 - (a) TRUE/ FALSE $A A = \emptyset$.
 - (b) TRUE/ FALSE $A \subset A$.
 - (c) TRUE/ FALSE $A \cup (B \cap C) = (A \cap C) \cup (B \cap C)$.
 - (d) TRUE/ FALSE $A \cup A = A \cap A$ for all sets A.
 - (e) TRUE/ FALSE If |A| = |B| then $A \times B = B \times A$.
 - (f) TRUE/ FALSE $A \times B = B \times A$ for all nonempty sets A and B.
 - (g) TRUE/ FALSE If $\{1\} \in P(A)$, then $1 \in A$ and $\{1\} \notin A$.
- 4. [10 points] Let $A = \{x \in \mathbb{N} | 1 \le x < 5\}$ and P(A) be a power set of A. Determine the truth or falsehood of the following statements. (CLEARLY circle TRUE or FALSE for each statement.)
 - (a) TRUE/ FALSE $A \subset P(A)$.
 - (b) TRUE/ FALSE $\{2\} \in P(A)$.
 - (c) TRUE/ FALSE $[3,4] \subseteq A$.
 - (d) TRUE/ FALSE |P(A)| = 32
 - (e) TRUE/ FALSE $\emptyset \subseteq P(A)$ and $\emptyset \in P(A)$.

- 5. [20 points] Assume that A and B are sets and P and Q are propositions. Characterize the following expressions as either
 - (i) a proposition/statement
 - (ii) not a proposition/statement, but an expression that makes sense mathematically.
 - (iii) an expression that makes no sense mathematically.

Q]

(CLEARLY circle i, ii, or iii for each statement.)

(a)
$$i / ii / iii$$
 $B \subset A$
(b) $i / ii / iii$ $A \Rightarrow B$
(c) $i / ii / iii$ $P \Rightarrow (A = B)$
(d) $i / ii / iii$ $P \subseteq Q$
(e) $i / ii / iii$ $P = Q$
(f) $i / ii / iii$ $B \cap (A - B)$
(g) $i / ii / iii$ $P \cup Q$
(h) $i / ii / iii$ $A + B$
(i) $i / ii / iii$ $(\exists x \in P)[x \in P)$

i / ii /iii

 $A \wedge B$

(j)

3